For very shallow indentations in W, Al, Au, and Fe-3wt%Si single crystals, hardness decreased with increasing depth irrespective of increasing or decreasing strain gradients. As such, strain gradient theory appears insufficient to explain the indentation size effect (ISE) at depths less than several hundred nanometers. Present research links the ISE to a ratio between the energy of newly created surface and plastic strain energy dissipation. Also, the contact surface to plastic volume ratio was nearly constant for a range of shallow depths. Based on the above, an analytical model of hardness versus depth provides a satisfactory fit to the experimental data and correlates well with embedded atom simulations.

1.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1993
, “
A Phenomenological Theory for Strain Gradient Effects in Plasticity
,”
J. Mech. Phys. Solids
,
41
, pp.
1825
1857
.
2.
Ma
,
Q.
, and
Clarke
,
D. R.
,
1995
, “
Size Dependent Hardness of Silver Single Crystals
,”
J. Mater. Res.
,
10
(
4
), pp.
853
863
.
3.
Nix
,
W. D.
, and
Gao
,
H.
,
1998
, “
Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
46
(
3
), pp.
411
425
.
4.
Aifantis
,
E. C.
,
1984
, “
On the Microstructural Origin of Certain Inelastic Modes
,”
ASME J. Eng. Mater. Technol.
,
106
, pp.
326
330
.
5.
Zbib
,
H.
, and
Aifantis
,
E. C.
,
1989
, “
On the Localization and Post Localization of Plastic Deformation—Part I: On the Initiation of Shear Bands
,”
Res. Mech.
, pp.
261
277
.
6.
Zbib
,
H.
, and
Aifantis
,
E. C.
,
1989
, “
On the Localization and Post Localization of Plastic Deformation—Part II: On the Evolution and Thickness of Shear Bands
,”
Res. Mech.
, pp.
279
292
.
7.
Zbib
,
H.
, and
Aifantis
,
E. C.
,
1989
, “
On the Localization and Post Localization of Plastic Deformation—Part III: On the Structure and Velocity of Postevin–Le Chatelier Bands
,”
Res. Mech.
, pp.
293
305
.
8.
Shu
,
J. Y.
, and
Fleck
,
N. A.
,
1998
, “
The Prediction of a Size Effect in Microindentation
,”
Int. J. Solids Struct.
,
35
(
13
), pp.
1363
1383
.
9.
Gao
,
H.
,
Huang
,
Y.
,
Nix
,
W. D.
, and
Hutchinson
,
J. W.
,
1999
, “
Mechanism-Based Strain Gradient Plasticity—I. Theory
,”
J. Mech. Phys. Solids
,
47
, pp.
1239
1263
.
10.
Hutchinson
,
J. W.
,
2000
, “
Plasticity at the Micron Scale
,”
Int. J. Solids Struct.
,
37
, pp.
225
238
.
11.
Ashby
,
M. F.
,
1970
, “
The Deformation of Plastically Non-Homogeneous Alloys
,”
Philos. Mag.
,
21
, pp.
399
424
.
12.
Poole
,
W. J.
,
Ashby
,
M. F.
, and
Fleck
,
N. A.
,
1996
, “
Micro-Hardness Tests on Annealed and Work-Hardened Copper Polycrystals
,”
Scr. Metall.
,
34
(
4
), pp.
559
564
.
13.
Wahl, K., and Asif, S. A., 2000, Naval Research Laboratories, personal communication.
14.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
,
1971
, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. London, Ser. A
,
A321
, pp.
301
313
.
15.
Derjaguin
,
B. V.
,
Muller
,
V. M.
, and
Toporov
,
Yu. P.
,
1975
, “
Effect of Contact Deformations on the Adhesion of Particles
,”
J. Colloid Interface Sci.
,
53
, pp.
314
326
.
16.
Maugis, D., 1999, “Contact, Adhesion and Rupture of Elastic Solids,” Series in Solid State Sciences, Springer, New York, pp. 62–66, 283–295.
17.
Tymiak
,
N. I.
,
Kramer
,
D. E.
,
Bahr
,
D. F.
, and
Gerberich
,
W. W.
,
2001
, “
Plastic Strain and Strain Gradients at Very Small Penetration Depths
,”
Acta Mater.
,
49
, pp.
1021
1034
.
18.
Baskes, M., and Horstemeyer, M., 1999, Sandia National Labs, private communication.
19.
Horstemeyer
,
M. F.
, and
Baskes
,
M. I.
,
1999
, “
Atomistic Finite Deformation Simulations: A Discussion on Length Scale Effects in Relation to Mechanical Stresses
,”
ASME J. Eng. Mater. Technol.
,
121
, pp.
114
119
.
20.
Gane
,
M.
, and
Cox
,
J. M.
,
1970
, “
The Micro-Hardness of Metals at Very Low Loads
,”
Philos. Mag.
,
22
(
179
), pp.
881
891
.
21.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.
22.
Stelmashenko
,
N. A.
,
Walls
,
M. G.
,
Brown
,
L. M.
, and
Milman
,
Yu. V.
,
1993
, “
Microindentations on W and Mo Oriented Single Crystals: An STM Study
,”
Acta Metall. Mater.
,
41
(
1
), pp.
2855
2865
.
23.
Bahr
,
D. F.
,
Kramer
,
D. E.
, and
Gerberich
,
W. W.
,
1998
, “
Non-Linear Deformation Mechanisms During Nanoindentation
,”
Acta Mater.
,
46
(
10
), pp.
3605
3617
.
24.
Gerberich
,
W. W.
,
Kramer
,
D. E.
,
Tymiak
,
N. I.
,
Volinsky
,
A. A.
,
Bahr
,
D. F.
, and
Kriese
,
M. D.
,
1999
, “
Nanoindentation-Induced Defect-Interface Interactions: Phenomena, Methods and Limitations
,”
Acta Mater.
,
47
(
15
), pp.
4115
4123
.
25.
Bobji
,
M. S.
,
Biswas
,
S. K.
, and
Pethica
,
J. B.
,
1997
, “
Effect of Roughness on the Measurement of Nanohardness—A Computer Simulation Study
,”
Appl. Phys. Lett.
,
71
(
8
), pp.
1059
1061
.
26.
Gerberich
,
W. W.
,
Yu
,
W.
,
Kramer
,
D.
,
Strojny
,
A.
,
Bahr
,
D.
,
Lilleodden
,
E.
, and
Nelson
,
J.
,
1998
, “
Elastic Loading and Elastoplastic Unloading from Nanometer Level Indentations for Modulus Determinations
,”
J. Mater. Res.
,
13
, pp.
421
439
.
27.
Begley
,
M. R.
, and
Hutchinson
,
J. W.
,
1998
, “
The Mechanics of Size-Dependent Indentation
,”
J. Mech. Phys. Solids
,
46
, pp.
2049
2068
.
28.
Belak, J., and Stowers, I. F., 1992, “The Indentation and Scraping of a Metal Surface: A Molecular Dynamics Study,” Fundamentals of Friction, I. L. Singer and H. M. Pollock, eds., Kluwer Academic, Dordrecht, pp. 511–520.
29.
Johnson, K. L., 1985, Contact Mechanics, Cambridge Univ., Cambridge, UK, Press, pp. 153–184.
30.
Kramer
,
D.
,
Huang
,
H.
,
Kriese
,
M.
,
Robach
,
J.
,
Nelson
,
J.
,
Wright
,
A.
,
Bahr
,
D.
, and
Gerberich
,
W. W.
,
1999
, “
Yield Strength Predictions from the Plastic Zone Around Nanocontacts
,”
Acta Mater.
,
47
(
1
), pp.
333
343
.
31.
Binnig
,
G.
,
Quate
,
C. F.
, and
Gerber
,
Ch.
,
1987
, “
Atomic Force Microscope
,”
Phys. Rev. Lett.
,
56
, pp.
930
933
.
32.
Kheshgi
,
H. S.
, and
Scriven
,
L. E.
,
1991
, “
Dewetting, Nucleation and Growth of Dry Regions
,”
Chem. Eng. Sci.
,
46
, pp.
519
526
.
33.
Josell
,
D.
, and
Spaepen
,
F.
,
1993
, “
Determination of the Interfacial Tension by Zero Creep Experiments on Multilayers
,”
Acta Metall.
,
41
, pp.
3015
3027
.
34.
Vermaak
,
J. S.
, and
Kuhlman-Wilsdorf
,
D.
,
1968
, “
Measurement of the Average Surface Stress of Gold as a Function of Temperature in the Temperature Range 50–985°
,”
J. Phys. Chem.
,
72
, pp.
4150
4154
.
35.
Mays
,
C. W.
,
Vermaak
,
J. S.
, and
Kuhlman-Wilsdorf
,
D.
,
1968
, “
Surface Stress and Surface Tension. II. Determination of the Surface Stress of Gold
,”
Surf. Sci.
,
12
, pp.
134
140
.
36.
Wasserman
,
H. J.
, and
Vermaak
,
J. S.
,
1970
, “
Determination of a Lattice Contraction in Very Small Silver Particles
,”
Surf. Sci.
,
22
, pp.
164
172
.
37.
Friesen, C., Dimitrov, N., Cammarata, R. C., and Sieradzki, K., 2000, “Surface Stress and the Electrocapilarity of Solid Electrodes,” Surf. Sci., submitted for publication.
38.
Gerberich
,
W. W.
,
Venkataraman
,
S. K.
,
Huang
,
H.
,
Harvey
,
S. E.
, and
Kohlstedt
,
D. L.
,
1995
, “
The Injection of Plasticity by Millinewton Contacts
,”
Acta Metall. Mater.
,
43
(
4
), pp.
1569
1576
.
39.
Michalske
,
T. A.
, and
Houston
,
J. E.
,
1998
, “
Dislocation Nucleation at Nano-Scale Mechanical Contacts
,”
Acta Mater.
,
46
(
2
), pp.
391
396
.
40.
Gerberich
,
W. W.
,
Nelson
,
J. C.
,
Lilleodden
,
E. T.
,
Anderson
,
P.
, and
Wyrobek
,
J. T.
,
1996
, “
Indentation Induced Dislocation Nucleation: The Initial Yield Point
,”
Acta Mater.
,
44
(
9
), pp.
3585
3598
.
41.
Fleck
,
N. A.
,
Muller
,
G. M.
,
Ashby
,
M. F.
, and
Hutchinson
,
J. W.
,
1994
,
Acta Metall. Mater.
,
42
(
2
), pp.
475
487
.
42.
Gouldstone
,
A.
,
Koh
,
H.-J.
,
Zeng
,
K.-Y.
,
Giannakopolous
,
A. E.
, and
Suresh
,
S.
,
2000
, “
Discrete and Continuous Deformation During Nanoindentation of Thin Films
,”
Acta Mater.
,
48
, pp.
2277
2295
.
43.
Yasuda, K., Shinohara, K., Kinoshita, C. and Arai, M., 1994, “An Interpretation of the Indentation Size/Load Effect on Diamond Pyramid Hardness,” Strength of Materials, Oikawa et al., eds., The Japan Institute of Metal, pp. 865–868.
44.
Corcoran
,
S. G.
,
Colton
,
R. J.
,
Lilleodden
,
E. T.
, and
Gerberich
,
W. W.
,
1997
, “
Anomalous Plastic Deformation of Surfaces: Nanoindentation of Gold Single Crystals
,”
Phys. Rev. B
,
55
(
24
), pp.
16057
16060
.
45.
Cheng, L., 1996, “Numerical Modeling of Indentation and Scratch Problems,” Ph.D. Thesis, University of Minnesota.
46.
Couchman
,
P. R.
,
Jesser
,
W. A.
,
Kuhlmann-Wilsdorf
,
D.
, and
Hirth
,
J. P.
,
1972
,
Surf. Sci.
,
33
, pp.
429
436
.
47.
Kramer
,
D. E.
,
Yoder
,
K. B.
, and
Gerberich
,
W. W.
,
2001
, “
Surface Constrained Plasticity: Oxide Rupture and the Yield Point Process
,”
Philos. Mag. A
,
81
(
8
), pp.
2033
2058
.
48.
Cheng
,
Y.-T.
, and
Cheng
,
C.-M.
,
1998
, “
Relationships Between Hardness, Elastic Modulus, and the Work of Indentation
,”
Appl. Phys. Lett.
,
73
(
5
), pp.
614
616
.
49.
Hirth, J., and Loethe, J., 1982, Theory of Dislocations, 2nd Ed., John Wiley and Sons, pp. 837–839.
You do not currently have access to this content.