The exact theory of linearly elastic beams developed by Ladeve`ze and Ladeve`ze and Simmonds is illustrated using the equations of plane stress for a fully anisotropic elastic body of rectangular shape. Explicit formulas are given for the cross-sectional material operators that appear in the special Saint-Venant solutions of Ladeve`ze and Simmonds and in the overall beamlike stress-strain relations between forces and a moment (the generalized stress) and derivatives of certain one-dimensional displacements and a rotation (the generalized displacement). A new definition is proposed for built-in boundary conditions in which the generalized displacement vanishes rather than pointwise displacements or geometric averages.

1.
Ladeve`ze
,
P.
,
1983
, “
Sur le principe de Saint-Venant en e´lasticite´
,”
J. Mec. Theor. Appl.
,
1
, pp.
161
184
.
2.
Ladeve`ze, P., 1985, “On Saint-Venant’s Principle in Elasticity,” Local Effects in Structures, P. Ladeve`ze, ed., Elsevier, New York, pp. 3–34.
3.
Ladeve`ze
,
P.
, and
Simmonds
,
J. G.
,
1996
, “
New Concepts for Linear Beam Theory With Arbitrary Geometry and Loading
,”
Comptes Rendus Acad. Sci. Paris
,
332
, Ser IIb, pp.
455
462
(partially in French).
4.
Ladeve`ze
,
P.
, and
Simmonds
,
J. G.
,
1998
, “
New Concepts for Linear Beam Theory With Arbitrary Geometry and Loading
,”
Eur. J. Mech. A/Solids
,
17
, pp.
377
402
.
5.
Ladeve`ze
,
P.
,
1982
, “
Principes de Saint-Venant en de´placement et en contrainte pour les poutres droites e´lastique semi-infinies
,”
Z. Angew. Math. Phys.
,
33
, pp.
132
139
.
6.
Libai, A., and Simmonds, J. G., 1998, The Nonlinear Theory of Elastic Shells, 2nd Ed., Cambridge University Press, Cambridge, UK.
7.
Gregory
,
R. D.
, and
Wan
,
F. Y. M.
,
1984
, “
Decaying States of Plane Strain in a Semi-Infinite Strip and Boundary Conditions for Plate Theory
,”
J. Elast.
,
14
, pp.
27
64
.
8.
Gregory
,
R. D.
, and
Gladwell
,
I.
,
1982
, “
The Cantilever Beam Under Tension, Bending, or Flexure at Infinity
,”
J. Elast.
,
12
, pp.
317
343
.
9.
Crafter
,
E. C.
,
Heise
,
R. M.
,
Horgan
,
C. O.
, and
Simmonds
,
J. G.
,
1993
, “
The Eigenvalues for a Self-Equilibrated, Semi-Infinite, Elastically Anisotropic Strip
,”
ASME J. Appl. Mech.
,
60
, pp.
276
281
.
10.
Wang
,
M. Z.
,
Ting
,
T. C. T.
, and
Yan
,
G.
,
1993
, “
The Anisotropic Elastic Semi-Infinite Strip
,”
Q. J. Mech. Appl. Math.
,
51
, pp.
283
297
.
You do not currently have access to this content.