In this paper, a model for the deformation of a rotating prismatic rod-like body is developed and analyzed. The novel feature of the model is its incorporation of the Poisson effect. As a result, it provides realistic solutions for the deformed states of steadily rotating rods. The model presented in this paper is also simplified to a nonlinear version of a classical model for rotating rods. Numerical continuation is used to solve the boundary value problems associated with these models.

1.
Antman, S. S., 1995, Nonlinear Problems of Elasticity, Springer-Verlag, New York.
2.
Leissa
,
A.
,
1981
, “
Vibrational Aspects of Rotating Turbomachinery Blades
,”
Appl. Mech. Rev.
,
34
, pp.
629
635
.
3.
Rao
,
J. S.
,
1987
, “
Turbomachinery Blade Vibrations
,”
Shock Vib. Dig.
,
19
, pp.
3
10
.
4.
Wright
,
A. D.
,
Smith
,
C. E.
,
Thresher
,
R. W.
, and
Wang
,
J. L. C.
,
1982
, “
Vibration Modes of Centrifugally Stiffened Beams
,”
ASME J. Appl. Mech.
,
49
, pp.
197
202
.
5.
Bhuta
,
P.-G.
, and
Jones
,
J. P.
,
1963
, “
On Axial Vibrations of a Whirling Bar
,”
J. Acoust. Soc. Am.
,
35
, pp.
217
221
.
6.
Brunelle
,
E. J.
,
1971
, “
Stress Redistribution and Instability of Rotating Beams and Disks
,”
AIAA J.
,
9
, pp.
758
759
.
7.
Hodges
,
D. H.
, and
Bless
,
R. R.
,
1994
, “
Axial Instability of Rotating Rods Revisited
,”
Int. J. Non-Linear Mech.
,
29
, pp.
879
887
.
8.
O’Reilly, O. M., and Turcotte, J. S., 1997, “On the free vibration of a whirling rod,” Proceedings of DETC’97: 1997 ASME Design Engineering Technical Conferences, Paper Number DETC97VIB4072.
9.
Green
,
A. E.
, and
Laws
,
N.
,
1966
, “
A General Theory of Rods
,”
Proc. R. Soc. London, Ser. A
,
A293
, pp.
145
155
.
10.
Naghdi, P. M., 1982, “Finite Deformation of Elastic Rods and Shells,” Proceedings of the IUTAM Symposium on Finite Elasticity, D. E. Carlson and R. T. Shield, eds., Martinus Nijhoff, The Hague, pp. 47–104.
11.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1979
, “
On Thermal Effects in the Theory of Rods
,”
Int. J. Solids Struct.
,
15
, pp.
829
853
.
12.
Naghdi
,
P. M.
, and
Rubin
,
M. B.
,
1989
, “
On the Significance of Normal Cross-Sectional Extension in Beam Theory With Application to Contact Problems
,”
Int. J. Solids Struct.
,
25
, pp.
249
265
.
1.
Nordenholz
,
T. R.
, and
O’Reilly
,
O. M.
,
1997
, “
On Steady Motions of an Elastic Rod With Application to Contact Problems
,”
Int. J. Solids Struct.
,
34
, pp.
1123
1143
;
2.
1997
34
,
3211
3212
.
1.
Krishnaswamy
,
S.
, and
Batra
,
R. C.
,
1998
, “
On Extensional Vibration Modes of Elastic Rods of Finite Length Which Include the Effect of Lateral Deformation
,”
J. Sound Vib.
,
215
, pp.
577
586
.
2.
O’Reilly, O. M., 2001, “On Coupled Longitudinal and Lateral Vibrations of Elastic Rods,” J. Sound Vib., to appear.
3.
Doedel, E. J., Champneys, A. R., Fairgrieve, T. F., Kuznetsov, Y. A., Sandstede, B., and Wang, X., 1997, “AUTO97: Continuation and bifurcation software for ordinary differential equations (with HomCont),” Department of Computer Science, Concordia University, Montreal, Canada.
4.
Doedel
,
E. J.
,
1997
, “
Nonlinear Numerics
,”
J. Franklin Inst.
,
334B
, pp.
1049
1073
.
5.
Seydel, R., 1988, From Equilibrium to Chaos: Practical Bifurcation and Stability Analysis, Elsevier, New York.
6.
Green
,
A. E.
,
Laws
,
N.
, and
Naghdi
,
P. M.
,
1967
, “
A Linear Theory of Straight Elastic Rods
,”
Arch. Ration. Mech. Anal.
,
25
, pp.
285
298
.
7.
O’Reilly
,
O. M.
,
1998
, “
On Constitutive Relations for Elastic Rods
,”
Int. J. Solids Struct.
,
35
, pp.
1009
1024
.
8.
Antman
,
S. S.
, and
Carbone
,
E. R.
,
1977
, “
Shear and Necking Instabilities in Nonlinear Elasticity
,”
J. Elast.
,
7
, pp.
125
151
.
9.
O’Reilly
,
O. M.
, and
Turcotte
,
J. S.
,
1997
, “
Elastic Rods With Moderate Rotation
,”
J. Elast.
,
48
, pp.
193
216
.
10.
Berdichevskii
,
V. L.
,
1981
, “
On the energy of an elastic rod
,”
J. Appl. Math. Mech.
,
45
,
518
529
.
11.
Cesnik
,
C. E. S.
, and
Hodges
,
D. H.
,
1993
, “
Variational-asymptotical analysis of initially curved and twisted composite beams
,”
Appl. Mech. Rev.
,
46
(
11/2
),
S211–S220
S211–S220
.
12.
Chree
,
C.
,
1889
, “
On Longitudinal Vibrations
,”
Quart. J. Pure Appl. Math.
,
23
,
317
342
.
13.
Cremer, L., Heckl, M., and Ungar E. E., 1988, Structure-Borne Sound: Structural Vibrations and Sound Radiation at Audio Frequencies, 2nd Ed., Springer-Verlag, New York.
14.
Lakin
,
D. A.
, and
Nachman
,
A.
,
1979
, “
Vibration and Buckling of Rotating Flexible Rods at Transitional Parameter Values
,”
J. Eng. Math.
,
13
, pp.
339
346
.
15.
O’Reilly
,
O. M.
, and
Varadi
,
P. C.
,
1999
, “
A Treatment of Shocks in One-Dimensional Thermomechanical Media
,”
Continuum Mech. Thermodyn.
,
11
, pp.
339
352
.
You do not currently have access to this content.