The response due to a dynamic loading of a poroviscoelastic one-dimensional column is treated analytically. Biot’s theory of poroelasticity is generalized to poroviscoelasticity using the elastic-viscoelastic correspondence principle in the Laplace domain. Damping effects of the solid skeletal structure and the solid material itself are taken into account. The fluid is modeled as in the original Biot’s theory without any viscoelastic effects. The solution of the governing set of two coupled differential equations known from the purely poroelastic case is converted to the poroviscoelastic solution using the developed elastic-viscoelastic correspondence in Laplace domain. The time-dependent response of the column is achieved by the “Convolution Quadrature Method” proposed by Lubich. Some interesting effects of viscoelasticity on the response of the column caused by a stress, pressure, and displacement loading are studied.

1.
Biot
,
M. A.
,
1941
, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
,
12
, pp.
155
164
.
2.
Biot
,
M. A.
,
1955
, “
Theory of Elasticity and Consolidation for a Porous Anisotropic Solid
,”
J. Appl. Phys.
,
26
, pp.
182
185
.
3.
Biot
,
M. A.
,
1956
, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range, II. Higher Frequency Range
,”
J. Acoust. Soc. Am.
,
28
, No.
2
, pp.
168
191
.
4.
Detournay, E., and Cheng, A. H.-D., 1993, Fundamentals of Poroelasticity, Vol. II (Comprehensive Rock Engineering: Principles, Practice & Projects), Pergamon Press, Tarrytown, NY, Chapter 5, pp. 113–171.
5.
Biot
,
M. A.
,
1956
, “
Theory of Deformation of a Porous Viscoelastic Anisotropic Solid
,”
J. Appl. Phys.
,
27
, No.
5
, pp.
459
467
.
6.
Wilson
,
R. K.
, and
Aifantis
,
E. C.
,
1982
, “
On the Theory of Consolidation With Double Porosity
,”
Int. J. Eng. Sci.
,
20
, pp.
1009
1035
.
7.
Vgenopoulou
,
I.
, and
Beskos
,
D. E.
,
1992
, “
Dynamic Behavior of Saturated Poroviscoelastic Media
,”
Acta Mech.
,
95
, pp.
185
195
.
8.
Abousleiman
,
Y.
,
Cheng
,
A. H.-D.
,
Jiang
,
C.
, and
Roegiers
,
J.-C.
,
1996
, “
Poroviscoelastic Analysis of Borehole and Cylinder Problems
,”
Acta Mech.
,
109
, No.
1–4
, pp.
199
219
.
9.
Schanz
,
M.
, and
Cheng
,
A. H.-D.
,
2000
, “
Transient Wave Propagation in a One-Dimensional Poroelastic Column
,”
Acta Mech.
,
145
, No.
1-4
, pp.
1
8
.
10.
Lubich
,
C.
,
1988
, “
Convolution Quadrature and Discretized Operational Calculus. I.
,”
Numer. Math.
,
52
, pp.
129
145
.
11.
Narayanan
,
G. V.
, and
Beskos
,
D. E.
,
1982
, “
Numerical Operational Methods for Time-Dependent Linear Problems
,”
Int. J. Numer. Methods Eng.
,
18
, pp.
1829
1854
.
12.
Cheng
,
A. H.-D.
,
Sidauruk
,
P.
, and
Abousleiman
,
Y.
,
1994
, “
Approximate Inversion of the Laplace Transform
,”
Mathematica J.
4
, No.
2
, pp.
76
82
.
13.
Schanz
,
M.
, and
Antes
,
H.
,
1997
, “
Application of ‘Operational Quadrature Methods’ in Time Domain Boundary Element Methods
,”
Meccanica
,
32
, No.
3
, pp.
179
186
.
14.
Christensen, R. M., 1971, Theory of Viscoelasticity, Academic Press, New York.
15.
Bonnet, G., and Auriault, J.-L., 1985, “Dynamics of Saturated and Deformable Porous Media: Homogenization Theory and Determination of the Solid-Liquid Coupling Coefficients,” N. Boccara and M. Daoud, eds., Physics of Finely Divided Matter, Springer-Verlag, Berlin, pp. 306–316.
16.
Cheng
,
A. H.-D.
,
Badmus
,
T.
, and
Beskos
,
D. E.
,
1991
, “
Integral Equations for Dynamic Poroelasticity in Frequency Domain With BEM Solution
,”
J. Eng. Mech.
117
, No.
5
, pp.
1136
1157
.
17.
Kim
,
Y. K.
, and
Kingsbury
,
H. B.
,
1979
, “
Dynamic Characterization of Poroelastic Materials
,”
Exp. Mech.
,
19
, pp.
252
258
.
18.
Badiey
,
M.
,
Cheng
,
A. H.-D.
, and
Mu
,
Y.
,
1998
, “
From Geology to Geoacoustics—Evaluation of Biot-Stoll Sound Speed and Attenuation for Shallow Water Acoustics
,”
J. Acoust. Soc. Am.
,
103
, No.
1
, pp.
309
320
.
19.
Lubich
,
C.
,
1988
, “
Convolution Quadrature and Discretized Operational Calculus. II
,”
Numer. Math.
,
52
, pp.
413
425
.
20.
Schanz
,
M.
, and
Antes
,
H.
,
1997
, “
A New Visco- and Elastodynamic Time Domain Boundary Element Formulation
,”
Comput. Mech.
,
20
, No.
5
, pp.
452
459
.
21.
Schanz
,
M.
,
1999
, “
A Boundary Element Formulation in Time Domain for Viscoelastic Solids
,”
Commun. Numer. Meth. Eng.
15
, pp.
799
809
.
You do not currently have access to this content.