The purely elastic stability and bifurcation of the one-dimensional plane Poiseuille flow is determined for a large class of Oldroyd fluids with added viscosity, which typically represent polymer solutions composed of a Newtonian solvent and a polymeric solute. The problem is reduced to a nonlinear dynamical system using the Galerkin projection method. It is shown that elastic normal stress effects can be solely responsible for the destabilization of the base (Poiseuille) flow. It is found that the stability and bifurcation picture is dramatically influenced by the solvent-to-solute viscosity ratio, ε. As the flow deviates from the Newtonian limit and ε decreases below a critical value, the base flow loses its stability. Two static bifurcations emerge at two critical Weissenberg numbers, forming a closed diagram that widens as the level of elasticity increases. [S0021-8936(00)00703-0]

1.
Bird, R. B., Armstrong, R. C., and Hassager, O., 1987, Dynamics of Polymeric Liquids, Vol. 1, 2nd Ed., John Wiley and Sons, New York.
2.
Vinogradov
,
G. V.
,
Malkin
,
A. Ya.
,
Vanovskii
,
Yu G.
,
Borisenkova
,
E. K.
,
Yarlykov
,
B. V.
, and
Berezheneya
,
G. V.
,
1972
,
J. Polym. Sci., Part A: Gen. Pap.
,
10
, p.
1061
1061
.
3.
Joseph
,
D. D.
,
Renardy
,
M.
, and
Saut
,
J. C.
,
1985
, “
Hyperbolicity and Change of Type in the Flow of Viscoelastic Fluids
,”
Arch. Ration. Mech. Anal.
,
87
, p.
213
213
.
4.
Denn
,
M. M.
,
1990
, “
Issues in Viscoelastic Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
22
, p.
13
13
.
5.
Larson
,
R. G.
,
1992
, “
Instabilities in Viscoelastic Flows
,”
Rheol. Acta
,
31
, p.
213
213
.
6.
Kolkka
,
R. W.
,
Malkus
,
D. S.
,
Hansen
,
M. G.
, and
Ierley
,
G. R.
,
1988
, “
Spurt Phenomena of the Johnson-Segalman Fluid and Related Models
,”
J. Non-Newtonian Fluid Mech.
,
29
, p.
303
303
.
7.
Malkus
,
D. S.
,
Nohel
,
J. A.
, and
Plohr
,
B. J.
,
1990
, “
Dynamics of Shear Flow of a Non-Newtonian Fluid
,”
J. Comput. Phys.
,
87
, p.
464
464
.
8.
Georgiou
,
G. C.
, and
Vlassopoulos
,
D.
,
1998
, “
On the Stability of the Simple Shear Flow of a Johnson-Segalman Fluid
,”
J. Non-Newtonian Fluid Mech.
,
75
, p.
77
77
.
9.
Sell, G. R., Foias, C., and Temam, R., 1993, Turbulence in Fluid Flows: A Dynamical Systems Approach, Springer-Verlag, New York.
10.
Khayat
,
R. E.
,
1994
, “
Chaos and Overstability in the Thermal Convection of Viscoelastic Fluids
,”
J. Non-Newtonian Fluid Mech.
,
53
, p.
227
227
.
11.
Khayat
,
R. E.
,
1995
, “
Nonlinear Overstability in the Thermal Convection of Viscoelastic Fluids
,”
J. Non-Newtonian Fluid Mech.
,
58
, p.
331
331
.
12.
Khayat
,
R. E.
,
1995
, “
Fluid Elasticity and Transition of Chaos in Thermal Convection
,”
Phys. Rev. E
,
51
, p.
380
380
.
13.
Avgousti
,
M.
, and
Beris
,
A. N.
,
1993
, “
Non-Axisymmetric Subcritical Bifurcations in Viscoelastic Taylor-Couette Flow
,”
Proc. R. Soc. London, Ser. A
,
A443
, p.
17
17
.
14.
Khayat
,
R. E.
,
1995
, “
Onset of Taylor Vortices and Chaos in Viscoelastic Fluids
,”
Phys. Fluids A
,
7
, p.
2191
2191
.
15.
Khayat
,
R. E.
,
1997
, “
Low-Dimensional Approach to Nonlinear Overstability of Purely Elastic Taylor-Vortex Flow
,”
Phys. Rev. Lett.
,
78
, p.
4918
4918
.
16.
Graham
,
M. D.
,
1998
, “
Effect of Axial Flow on Viscoelastic Taylor-Couette Instability
,”
J. Fluid Mech.
,
360
, p.
341
341
.
17.
Ashrafi
,
N.
, and
Khayat
,
R. E.
,
2000
, “
Finite Amplitude Taylor-Vortex Flow of Weakly Shear-Thinning Fluids
,”
Phys. Rev. E
,
61
, p.
1455
1455
.
18.
Muller
,
S. J.
,
Shaqfeh
,
E. S. J.
, and
Larson
,
R. G.
,
1993
, “
Experimental Study of the Onset of Oscillatory Instability in Viscoelastic Taylor-Couette Flow
,”
J. Non-Newtonian Fluid Mech.
,
46
, p.
315
315
.
19.
Johnson
,
M. W.
, and
Segalman
,
D.
,
1977
, “
A Model for Viscoelastic Fluid Behavior Which Allows Non-Affine Deformation
,”
J. Non-Newtonian Fluid Mech.
,
2
, p.
278
278
.
20.
Khayat
,
R. E.
, and
Derdouri
,
A.
,
1994
, “
Inflation of Hyperelastic Cylindrical Membranes as Applied to Blow Moulding, Part I. Axisymmetric Case
,”
Int. J. Numer. Methods Eng.
,
37
, p.
3773
3773
.
You do not currently have access to this content.