A thin electrode layer embedded at the interface of two piezoelectric materials represents a common feature of many electroceramic multilayer devices. The analysis of interface cracks between the embedded electrode layer and piezoelectric ceramic leads to a nonstandard mixed boundary value problem which likely prevents a general analytical solution. The present work shows that the associated mixed boundary value problem does indeed admit an exact elementary solution for a special case of major practical interest in which the two piezoelectric half-planes are poled in opposite directions perpendicular to the electrode layer. In this case, it is found that oscillatory singularity disappears, in spite of the unsymmetric characters of the problem, and electroelastic fields exhibit power singularities. Particular emphasis is placed on the near-tip singular stresses along the bonded interface. The results show that tensile stress exhibits the square root singularity along the interface whereas shear stress exhibits the dominant-order nonsquare root singularity. In addition, the present model indicates that a pure electric-field loading could induce the dominant-order singular shear stress directly ahead of the interface crack tip. [S0021-8936(00)00602-4]

1.
Berlincourt
,
D.
,
1981
, “
Piezoelectric Ceramics: Characteristics and applications
,”
J. Am. Ceram. Soc.
,
70
, pp.
1506
1595
.
2.
Pohanka, R. C., and Smith, P., 1987, “Recent Advances in Piezoelectric Ceramics,” Electronic Ceramics, L. M. Levinson, ed., Marcel Dekker, New York, pp. 45–146.
3.
Freiman
,
S. W.
,
1989
, “
Review of Mechanically Related Failures of Ceramic Capacitors and Capacitor Materials
,”
J. Am. Ceram. Soc.
,
72
, pp.
2258
2263
.
4.
Newnham
,
R. E.
,
1989
, “
Electroceramics
,”
Rep. Prog. Phys.
,
52
, pp.
123
156
.
5.
Winzer
,
S. R.
,
Shankar
,
N.
, and
Ritter
,
A.
,
1989
, “
Desiging Cofired Multilayer Electrostrictive Actuators for Reliability
,”
J. Am. Ceram. Soc.
,
72
, pp.
2246
2257
.
6.
Cao
,
H. C.
, and
Evans
,
A. G.
,
1994
, “
Electric-Field Induced Fatigue Crack Growth in Piezoelectrics
,”
J. Am. Ceram. Soc.
,
77
, pp.
1783
1786
.
7.
Furuta
,
A.
, and
Uchino
,
K.
,
1993
, “
Dynamic Observation of Crack Propagation in Piezoelectric Multilayer Ceramic Actuators
,”
J. Am. Ceram. Soc.
,
76
, pp.
1615
1617
.
8.
Aburatani
,
H.
,
Harada
,
S.
,
Uchino
,
K.
, and
Furuta
,
A.
,
1994
, “
Destruction Mechanism of Ceramic Multilayer Actuators
,”
Jpn. J. Appl. Phys.
,
33
, pp.
3091
3094
.
9.
Freiman, S. W., and White, G. S., 1994, “Intelligent Ceramic Materials: Issues of Brittle Fracture,” Proc. 2nd Int. Conf. Intelligent Materials, pp. 52–62.
10.
Kuo, C. M., and Barnett, D. M., 1991, “Stress Singularities of Interfacial Cracks in Bonded Piezoelectric Half-Spaces,” Modern Theory of Anisotropic Elasticity and Applications, J. J. Wu, T. C. T. Ting and D. M. Barnett, eds., SIAM, Philadelphai, pp. 33–50.
11.
Suo
,
Z.
,
Kuo
,
C.-M.
,
Barnett
,
D. M.
, and
Willis
,
J. R.
,
1992
, “
Fracture Mechanics for Piezoelectric Ceramics
,”
J. Mech. Phys. Solids
,
40
, pp.
739
765
.
12.
Clements
,
D. L.
,
1971
, “
A Crack Between Dissimilar Anisotropic Media
,”
Int. J. Eng. Sci.
,
9
, pp.
257
265
.
13.
Ru
,
C. Q.
,
1999
, “
Exact Solution for Finite Electrode Layers Embedded at the Interface of Two Piezoelectric Half-Planes
,”
J. Mech. Phys. Solids
,
48
, pp.
693
708
.
14.
Stroh
,
A. N.
,
1958
, “
Dislocations and Cracks in Anisotropic Elasticity
,”
Philos. Mag.
,
3
, pp.
625
646
.
15.
Lothe
,
J.
, and
Barnett
,
D. M.
,
1976
, “
Integral Formalism for Surface Waves in Piezoelectric Crystals
,”
J. Appl. Phys.
,
47
, pp.
1799
1807
.
16.
Chung
,
M. Y.
, and
Ting
,
T. C. T.
,
1996
, “
Piezoelectric Solid with an Elliptic Inclusion or Hole
,”
Int. J. Solids Struct.
,
33
, pp.
3343
3361
.
17.
Muskhelishvili, I. N., 1963, Some Basic Problems of the Mathematical Theory of Elasticity, P. Noordhoff Ltd, Amsterdam, The Netherlands.
18.
Ru
,
C. Q.
,
Mao
,
X.
, and
Epstein
,
M.
,
1998
, “
Electric-Field Induced Interfacial Cracking in Multilayer Electrostrictive Actuators
,”
J. Mech. Phys. Solids
46
, pp.
1301
1318
.
19.
Tobin, A. G., and Pak, Y. E., 1993, “Effect of Electric Field on Fracture Behavior of PZT Ceramics,” Proc. SPIE, No. 1916, pp. 78–86.
20.
Park
,
S.
, and
Sun
,
C. T.
,
1996
, “
Fracture Criteria for Piezoelectric Ceramics
,”
J. Am. Ceram. Soc.
,
78
, pp.
1475
1480
.
21.
Ru
,
C. Q.
,
1999
, “
Effect of Electrical Polarization Saturation on Stress Intensity Factors in a Piezoelectric Ceramic
,”
Int. J. Solids Struct.
,
36
, pp.
869
883
.
22.
Sosa
,
H.
,
1992
, “
On the Fracture Mechanics of Piezoelectric Solids
,”
Int. J. Solids Struct.
,
29
, pp.
2613
2622
.
23.
Pak
,
Y. E.
,
1992
, “
Linear Electro-Elastic Fracture Mechanics of Piezoelectric Materials
,”
Int. J. Fract.
,
54
, pp.
79
100
.
24.
Ru
,
C. Q.
,
1999
, “
Electric-Field Induced Crack Closure in Linear Piezoelectric Media
,”
Acta Mater.
,
47
, pp.
4683
4693
.
You do not currently have access to this content.