By combining Stroh’s formalism and the method of analytical continuation, several mixed-typed boundary value problems of an anisotropic elastic half-plane are studied in this paper. First, we consider a set of rigid punches of arbitrary profiles indenting into the surface of an anisotropic elastic half-plane with no slip occurring. Illustrations are presented for the normal and rotary indentation by a flat-ended punch. A sliding punch with or without friction is then considered under the complete or incomplete indentation condition.

1.
Chen
W. T.
,
1969
, “
Stresses in Some Anisotropic Materials Due to Indentation and Sliding
,”
International Journal of Solids and Structures
, Vol.
5
, pp.
191
214
.
2.
England, A. H., 1971, Complex Variable Methods in Elasticity, Wiley Interscience, London.
3.
Fabrikant
V. I.
,
1986
a, “
Flat Punch of Arbitrary Shape on an Elastic Half-space
,”
International Journal of Engineering Science
, Vol.
24
, pp.
1731
1740
.
4.
Fabrikant
V. I.
,
1986
b, “
Inclined Flat Punch of Arbitrary Shape on an Elastic Half-space
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
53
, pp.
798
806
.
5.
Galin, L. A., 1961, Contact Problems in the Theory of Elasticity, translation by I. N. Sneddon, North Carolina State College, Raleigh, N.C.
6.
Gladwell
G. M. L.
,
1976
, “
On Some Unbonded Problems in Plane Elasticity Theory
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
43
, pp.
263
267
.
7.
Gladwell
G. M. L.
, and
England
A. H.
,
1977
, “
Orthogonal Polynomial Solutions to Some Mixed Boundary Value Problems in Elasticity Theory
,”
Quarterly Journal of Mechanics and Applied Mathematics
, Vol.
30
, pp.
175
185
.
8.
Gladwell
G. M. L.
,
1978
, “
Polynomial Solutions for an Ellipse on an Anisotropic Elastic Half-Space
,”
Quarterly Journal of Mechanics and Applied Mathematics
, Vol.
31
, pp.
251
260
.
9.
Gladwell, G. M. L., 1980, Contact Problems in the Classical Theory of Elasticity, Sijthoff and Noordhoff.
10.
Green, A. E., and Zerna, W., 1954, Theoretical Elasticity, Clarendon Press, Oxford, UK.
11.
Hasebe
N.
,
Okumura
M.
, and
Nakamura
T.
,
1989
, “
Frictional Punch and Crack in Plane Elasticity
,”
ASCE Journal of Engineering Mechanics
, Vol.
115
, pp.
1137
1149
.
12.
Hwu
C.
,
1992
, “
Thermoelastic Interface Crack Problems in Dissimilar Anisotropic Media
,”
International Journal of Solids and Structures
, Vol.
29
, pp.
2077
2090
.
13.
Hwu
C.
,
1993
, “
Explicit Solutions for the Collinear Interface Crack Problems
,”
International Journal of Solids and Structures
, Vol.
30
, pp.
301
312
.
14.
Jaffar
M. J.
, and
Savage
M. D.
,
1988
, “
On the Numerical Solution of Line Contact Problems Involving Bonded and Unbonded Strips
,”
Journal of Strain Analysis
, Vol.
23
, pp.
67
77
.
15.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cambridge, U.K.
16.
Klintworth
J. W.
, and
Stronge
W. L.
,
1990
, “
Plane Punch Indentation of Anisotropic Elastic Half Space
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
57
, pp.
84
90
.
17.
Kuo
C. H.
, and
Keer
L. M.
,
1992
, “
Contact Stress Analysis of a Layered Transversely Isotropic Half-Space
,”
Journal of Tribology
, Vol.
114
, pp.
253
262
.
18.
Lin
W.
,
Kuo
C. H.
, and
Keer
L. M.
,
1991
, “
Analysis of a Transversely Isotropic Half-Space Under Normal and Tangential Loadings
,”
Journal of Tribology
, Vol.
113
, pp.
335
338
.
19.
Muskhelishvili, N. I., 1954, Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Groningen, The Netherlands.
20.
Okumura
M.
,
Hasebe
N.
, and
Nakamura
T.
,
1990
, “
Crack Due to Wedge-shaped Punch with Friction
,”
ASCE Journal of Engineering Mechanics
, Vol.
116
, pp.
2173
2185
.
21.
Pan
Y. C.
, and
Chou
T. W.
,
1979
, “
Green’s Function Solutions for Semi-infinite Transversely Isotropic Materials
,”
International Journal of Engineering Science
, Vol.
17
, pp.
545
551
.
22.
Shibuya
T.
,
Koizumi
T.
,
Kawamura
N.
, and
Gladwell
G. M. L.
,
1989
, “
The Contact Problem Between an Elliptical Punch and an Elastic Half-space with Friction
,”
JSME International Journal, Series I
, Vol.
32
, pp.
192
198
.
23.
Shield
R. T.
,
1987
, “
Variational Principles for Some Nonstandard Elastic Problems
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
54
, pp.
768
771
.
24.
Stroh
A. N.
,
1958
, “
Dislocations and Cracks in Anisotropic Elasticity
,”
Philosophical Magazine
, Vol.
7
, pp.
625
646
.
25.
Stroh
A. N.
,
1962
, “
Steady State Problems in Anisotropic Elasticity
,”
Journal of Mathematics and Physics
, Vol.
41
, pp.
77
103
.
26.
Suo
Z.
,
1990
, “
Singularities, Interfaces and Cracks in Dissimilar Anisotropic Media
,”
Proceedings of the Royal Society, London
, Vol.
A427
, pp.
331
358
.
27.
Ting
T. C. T.
,
1982
, “
Effects of Change of Reference Coordinates on the Stress Analysis of Anisotropic Elastic Materials
,”
International Journal of Solids and Structures
, Vol.
18
, pp.
139
152
.
28.
Ting
T. C. T.
,
1986
, “
Explicit Solution and Invariance of the Singularities at an Interface Crack in Anisotropic Composites
,”
International Journal of Solids and Structures
, Vol.
22
, pp.
965
983
.
29.
Ting
T. C. T.
,
1988
, “
Some Identities and the Structures of Ni in the Stroh Formalism of Anisotropic Elasticity
,”
Quarterly Journal of Applied Mathematics
, Vol.
46
, pp.
109
120
.
30.
Tsiang
T. H.
, and
Mandell
J. F.
,
1985
, “
Bearing/Contact for Anisotropic Materials
,”
AIAA Journal
, Vol.
23
, pp.
1273
1277
.
31.
Willis
J. R.
,
1966
, “
Hertzian Contact of Anisotropic Bodies
,”
Journal of the Mechanics and Physics of Solids
, Vol.
14
, pp.
163
176
.
This content is only available via PDF.
You do not currently have access to this content.