In this study a continuous asymptotic model is developed to describe the rigid-perfectly plastic deformation of a single rough surface in contact with an ideally smooth and rigid counter-surface. The geometry of the rough surface is assumed to be fractal, and is modeled by an effective fractal surface compressed into the ideally smooth and rigid counter-surface. The rough self-affine fractal structure of the effective surface is approximated using a deterministic Cantor set representation. The proposed model admits an analytic solution incorporating volume conservation. Presented results illustrate the effects of volume conservation and initial surface roughness on the rigid-perfectly plastic deformation that occurs during contact processes. The results from this model are compared with existing experimental load displacement results for the deformation of a ground steel surface.

1.
Archard
J. F.
,
1957
, “
Elastic Deformation and the Laws of Friction
,”
Proc. Roy. Soc. Lond.
, Vol.
A243
, pp.
190
205
.
2.
Berry
M. V.
,
1979
, “
Diffractals
,”
J. Phys. A
, Vol.
12
, pp.
781
797
.
3.
Bhushan, B., 1990, Tribology and Mechanics of Magnetic Storage Devices, Springer-Verlag, New York.
4.
Bhushan
B.
, and
Majumdar
A.
,
1992
, “
Elastic-Plastic Contact Model for Bifractal Surfaces
,”
Wear
, Vol.
153
, pp.
53
64
.
5.
Borodich
F. M.
, and
Mosolov
A. B.
,
1991
, “
Fractal Contact of Solids
,”
Sov. Phys. Tech. Phys.
, Vol.
36
, No.
9
, pp.
995
997
.
6.
Borodich
F. M.
, and
Mosolov
A. B.
,
1992
, “
Fractal Roughness in Contact Problems
,”
J. Appl. Maths. Mechs.
, Vol.
56
, No.
5
, pp.
681
690
.
7.
Bowden, F. P., and Tabor, D., 1951, Friction and Lubrication of Solids: Part I, Oxford University Press, London.
8.
Bowden, F. P., and Tabor, D., 1964, Friction and Lubrication of Solids: Part II, Oxford University Press, London.
9.
Chang
W. R.
,
Etsion
I.
, and
Bogy
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME Journal of Tribology
, Vol.
109
, pp.
257
263
.
10.
Cook, R. D., and Young, W. C., 1985, Advanced Mechanics of Materials, Macmillan, New York.
11.
Feder, J., 1988, Fractals, Plenum Press, New York.
12.
Greenwood
J. A.
, and
Williamson
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. Roy. Soc. Lond.
, Vol.
A295
, pp.
300
319
.
13.
Handzel-Powierza
Z.
,
Klimczak
T.
, and
Polijaniuk
A.
,
1992
, “
On the Experimental Verification of the Greenwood-Williamson Model for the Contact of Rough Surfaces
,”
Wear
, Vol.
154
, pp.
115
124
.
14.
Hill, R., 1950, The Mathematical Theory of Plasticity, Clarendon Press, Oxford, UK.
15.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cambridge, U.K.
16.
Jossang
T.
, and
Feder
J.
,
1992
, “
The Fractal Characterization of Rough Surfaces
,”
Phys. Scr.
, Vol.
T44
, pp.
9
14
.
17.
Liu, S. H., Kaplan, T., and Gray, L. J., 1986, “Theory of the AC Response of Rough Interfaces,” Fractals in Physics, L. Pietronero and E. Tosatti, eds., North-Holland, New York, pp. 383–389.
18.
Majumdar
A.
, and
Bhushan
B.
,
1991
, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME Journal of Tribology
, Vol.
113
, pp.
1
11
.
19.
Majumdar
A.
,
Bhushan
B.
, and
Tien
C. L.
,
1991
, “
Role of Fractal Geometry in Tribology
,”
ASME Advances in Information Storage Systems
, Vol.
1
, pp.
231
266
.
20.
Mandelbrot, B. B., 1982, The Fractal Geometry of Nature, Freeman, San Francisco.
21.
Mandelbrot
B. B.
,
1985
, “
Self-affine Fractals and Fractal Dimension
,”
Phys. Scr.
, Vol.
32
, pp.
257
260
.
22.
Oden
J. T.
, and
Martins
J. A. C.
,
1985
, “
Models and Computational Methods for Dynamic Friction Phenomena
,”
Comput. Meth. Appl. Mech. Engng.
, Vol.
52
, pp.
527
634
.
23.
Voss, R. F., 1988, “Fractals in Nature: From Characterization to Simulation,” The Science of Fractal Images, H. O. Pietgen and D. Saupe, eds., Springer-Verlag, New York, pp. 21–70.
24.
Warren
T. L.
,
Majumdar
A.
, and
Krajcinovic
D.
,
1995
, “
Atomic Force Microscope Imaging of the Surface Roughness of SCS and TiB2 coated SiC Fibers and Uncoated Sapphire Fibers
,”
Composites
, Vol.
26
, pp.
619
629
.
This content is only available via PDF.
You do not currently have access to this content.