The Saint-Venant semi-inverse method generalization for the problem of torsion under large deformations is presented. The case where a prism cross-section possesses central symmetry is regarded. The torsion problem is reduced to a two-dimensional nonlinear boundary value problem. Differential balance equations and lateral conditions are satisfied by solving the boundary value problem. End conditions are implemented so that the stress system is equivalent to the torsion moment, and to the axial force passing through the cross-section center of inertia. The energy method, used to solve the torsion problem under small twist angles, is extended to the case of finite deformations. Approximate solutions of the torsion problem for elliptical, rectangular, and quadrantal cylinders made of Treloar and Blatz-Ko materials are obtained.

1.
Green, A. E., and Adkins, J. E., 1960, Large Elastic Deformations and Non-Linear Continuum Mechanics, Oxford Univ. Press, Oxford, U.K.
2.
Lurje, A. I., 1980, Nelinejnaja Teorija Uprugosti, Nauka, Moscow.
3.
Lurje, A. I., 1970, Teorija Uprugosti, Nauka, Moscow.
4.
Poynting
J. H.
,
1909
, “
On Pressure Perpendicular to the Shear Planes in Finite Pure Shears and on the Lengthening of Loaded Wires when Twisted
,”
Proceedings of the Royal Society of London
, Vol.
A82
, pp.
546
559
.
5.
Zubov, L. M., and Ovseenko, S. U., 1980, “Metodika Raschota Bolshih Deformatsij Kruchenija i Radialnogo Sdviga Tsilindrov iz Szhimaemyh Rezinopodobnyh Materialov,” Tezisy Dokladov Vsesojuznoj Nauchno-Tech-nicheskoj Konferentsii po Metodam Raschota lzdelij z Vysokoelastichnyh Materialov, Riga, pp. 42–43.
6.
Zubov
L. M.
,
1983
, “
Teorija Kruchenija Prizmatieheskih Sterzhnej pri Konechnyh Deformatsijah
,”
Doklady Akademii Nauk SSSR
, Vol.
270
, N
4
, pp.
827
831
.
This content is only available via PDF.
You do not currently have access to this content.