The forced dynamic response of annular plates to circumferentially and radially moving concentrated transverse loads is investigated utilizing classical plate theory, with damping included, and solved in integral form. The boundary conditions are that the inner boundary of the plate is clamped and the outer boundary is free. An analytical expression in Fourier-Bessel series form is obtained for the forced deflection response to an arbitrarily moving concentrated load. This study includes radially moving loads and is a significant extension of the understanding of circular and annular plate dynamics. This understanding of radially moving loads is used to examine the nature of resonance conditions and corresponding critical values of the load parameters. The shapes of deflection modes of plate vibration are also presented. Damping and loading parameter sensitivities are studied in detail.

This content is only available via PDF.
You do not currently have access to this content.