The dynamic response, including the stresses at the surface, of a rigid parabolic cylinder in an infinite elastic solid is studied for an incident plane compressional wave. The method of separation of variables in parabolic coordinates is used. With the wave function for one of the scattered waves expanded into a series of those for the other wave, the total scattered fields are then determined numerically by inverting a truncated infinite matrix. The same problem is solved also by a recently developed method of perturbation which describes the two waves in elastic solids in terms of wave functions with a common wave speed. With the latter method, the total scattered waves are determined analytically for the various orders of perturbation, and these results supplement the numerical wave function expansion results in the low-frequency range.

This content is only available via PDF.
You do not currently have access to this content.