Abstract

An analysis of longitudinal impact tests that were made by Drs. D. S. Clark and P. E. Duwez at the California Institute of Technology on an iron and a steel with definite yield points is described. From this analysis is deduced the probable nature of the dynamic stress-strain relations for such materials. These appear to differ greatly from the static stress-strain relations, unlike the case for materials without yield points. As pointed out by Duwez and Clark, the upper yield stress for undeformed material is several times as great under impact as the static yield stress. The present analysis indicates that under impact, the material with a definite yield point is made harder at a given deformation, and ruptures at a higher (engineering) stress and smaller strain than when loaded statically. The critical impact velocity, defined as that at which nearly instantaneous failure occurs in tension, is discussed, and the factors upon which it depends are given.

This content is only available via PDF.
You do not currently have access to this content.