Abstract

This study is part of ongoing work on situational awareness and autonomy of a 16’ WAM-V USV. The objective of this work is to determine the potential and merits of application of two different station-keeping controllers for a fixed-pose motion control of the USV. The assessment includes performance and power consumption metrics tested under harsh environmental disturbances to evaluate the robustness of the control methods. The first is a nonlinear trajectory-tracking control method based on the sliding-mode control technique, while the second method uses a machine-learning approach based on Deep Reinforcement Learning. Results from both the approaches are compared for various case studies.

This content is only available via PDF.
You do not currently have access to this content.