An attempt has been made to synthesize SrFeO3-δ powder by sol-gel process involving oxalate formation, its digestion for 4h, drying at 150°C for 24h, and decomposition at 800°C for 10h. The resulting powder is shown to a) exhibit a single phase with a perovskite-type cubic structure and lattice parameter a = 3.862±0.002A˚, b) contain irregular shape particles, and c) display optical absorption peaks corresponding to charge transfer from oxygen to iron (3.73 and 3.41eV), t2g to eg transition of Fe3+ (1.57eV), and crystal field (3d-3d) charge transfer of Fe3+ (1.25eV). Impedance over a wide frequency range of 20Hz-2MHz at 118–318K has contributions from two parallel ‘RC’ circuits belonging to bulk and grain boundaries with the later displaying significant space charge polarization. The relaxation time of polarization follows an Arrhenius behaviour (τ = τo exp[Ea/kBT]) with τo as ∼10−8s and activation energy Ea as ∼50meV. Further, the sample having magnetic character with transition temperature as 853K, coercivity (Hc) = 3748Oe and magnetization 0.09 μB per iron atom (at 17kOe). The zero field cooled and field cooled magnetization versus temperature data in conjunction with constricted hysteresis loops near the origin suggest core-shell morphology for the particles, core being antiferromagnetic with net uncompensated moment and shell conforming to disordered disposition of spins.

This content is only available via PDF.
You do not currently have access to this content.