Abstract

Reliability analysis that evaluates a probabilistic constraint is an important part of reliability-based design optimization (RBDO). Inverse reliability analysis evaluates the percentile value of the performance function that satisfies the reliability. To compute the percentile value, analytical methods, surrogate model based methods, and sampling-based methods are commonly used. In case the dimension or nonlinearity of the performance function is high, sampling-based methods such as Monte Carlo simulation, Latin hypercube sampling, and importance sampling can be directly used for reliability analysis since no analytical formulation or surrogate model is required in these methods. The sampling-based methods have high accuracy but require a large number of samples, which can be very time-consuming. Therefore, this paper proposes methods that can improve the accuracy of reliability analysis when the number of samples is not enough and the sampling-based methods are considered to be better candidates. This study starts with the idea of training the relationship between the realization of the performance function at a small sample size and the corresponding true percentile value of the performance function. Deep feedforward neural network (DFNN), which is one of the promising artificial neural network models that approximates high dimensional models using deep layered structures, is trained using the realization of various performance functions at a small sample size and the corresponding true percentile values as input and target training data, respectively. In this study, various polynomial functions and random variables are used to create training data sets consisting of various realizations and corresponding true percentile values. A method that approximates the realization of the performance function through kernel density estimation and trains the DFNN with the discrete points representing the shape of the kernel distribution to reduce the dimension of the training input data is also presented. Along with the proposed reliability analysis methods, a strategy that reuses samples of the previous design point to enhance the efficiency of the percentile value estimation is explained. The results show that the reliability analysis using the DFNN is more accurate than the method using only samples. In addition, compared to the method that trains the DFNN using the realization of the performance function, the method that trains the DFNN with the discrete points representing the shape of the kernel distribution improves the accuracy of reliability analysis and reduces the training time. The proposed sample reuse strategy is verified that the burden of function evaluation at the new design point can be reduced by reusing the samples of the previous design point when the design point changes while performing RBDO.

This content is only available via PDF.
You do not currently have access to this content.