Abstract

Experiments were conducted to study the characteristics of unsteady flow in a small, axisymmetric shock tube. These experiments have been supplemented by calculational results obtained from the SHARC hydrodynamic computer code. Early calculational results indicated that a substantial gradient in flow velocity and dynamic pressure may exist along the cross-section of the shock tube. To further investigate this phenomenon, a series of experiments was performed in which dynamic pressure measurements were made at various radii in the expansion section of the shock tube. Additional calculations with the SHARC code were also performed in which turbulence modelling, artificial viscosity and second order advection were employed.

The second set of calculations agree very well with the experimental results. These results indicate that the dynamic pressure is nearly constant across the radius of the shock tube. This contradicts the early computational results which were performed with first order advection and without turbulence modelling. As a result of these findings, it was concluded that turbulence modelling was necessary to obtain accurate shock tube flow simulations.

This content is only available via PDF.
You do not currently have access to this content.