In order to explore the similarities and differences between the flow fields of cantilever stator and idealized compressor cascade with tip clearance, and to extend the cascade leakage model to compressors, the influence of stator hub rotation to represent cascade and cantilever stator on hub leakage flow was numerically studied. On this basis, the control strategy and mechanism of blade root suction were discussed.

The results show that there is no obvious influence on stall margin of the compressor whether the stator hub is rotating or stationary. For rotating stator hub, the overall efficiency is decreased while the total pressure ratio is increased. At peak efficiency point and near stall point, the efficiency is reduced by about 0.43% and 0.34% individually, while the total pressure ratio is enlarged by about 0.23% and 0.27%, respectively.

The gap leakage flow is promoted due to stator hub rotation, and the structure of the leakage vortex is weakened obviously. In addition, the hub leakage flow originating from the blade leading edge of rotating hub may contribute to double leakage near the trailing edge of the adjacent blade. However, the leakage flow directly out of the blade passage with stationary stator hub. The stator root loading and strength of the leakage flow increase with the rotation of the hub, and the leakage vortex is further away from the suction surface of the blade and is stretched to an ellipse closer to the endwall under the shear action. The rotating hub makes the flow loss near the stator gap increase, while the flow loss in the upper part of the blade root is decreased. Meanwhile, the total pressure ratio in the end area is increased.

Blade root suction of cantilever stator can effectively control the hub leakage flow, inhibit the development of hub leakage vortex, and improve the flow capacity of the passage, thereby reducing the flow loss and modifying the flow field in the end zone.

This content is only available via PDF.
You do not currently have access to this content.