Newest Issue

Research Papers: Design Theory and Methodology

J. Mech. Des. 2018;140(9):091101-091101-11. doi:10.1115/1.4040317.

Fault adaptive design seeks to find the principles and properties that enable robustness, reliability, and resilience to implement those features into engineering products. In nature, this characteristic of adaptability is the fundamental trait that enables survival. Utilizing adaption strategy is a new area of research exploration for bio-inspired design (BID). In this paper, we introduce a tool for BID for fault adaption. Further, we discuss insights from using this tool in an undergraduate design experiment. The goal of the tool is to assist designers to develop fault adaptive behaviors in engineering systems using nature as inspiration. This tool is organized as a binary tree where branches that represent the specific details of how an organism achieves an adaptive behavior or characteristic. Results from an initial study indicate, for the specific challenge of designing fault adaption into a system, a strategy-based method can provide designers with innovative analogies and help provide the details needed to bridge the gap between analogy and engineering implementation.

Commentary by Dr. Valentin Fuster

Research Papers: Design Automation

J. Mech. Des. 2018;140(9):091401-091401-12. doi:10.1115/1.4040166.

Crowdsourcing is the practice of getting ideas and solving problems using a large number of people on the Internet. It is gaining popularity for activities in the engineering design process ranging from concept generation to design evaluation. The outcomes of crowdsourcing contests depend on the decisions and actions of participants, which in turn depend on the nature of the problem and the contest. For effective use of crowdsourcing within engineering design, it is necessary to understand how the outcomes of crowdsourcing contests are affected by sponsor-related, contest-related, problem-related, and individual-related factors. To address this need, we employ existing game-theoretic models, empirical studies, and field data in a synergistic way using the theory of causal inference. The results suggest that participants' decisions to participate are negatively influenced by higher task complexity and lower reputation of sponsors. However, they are positively influenced by the number of prizes and higher allocation to prizes at higher levels. That is, an amount of money on any following prize generates higher participation than the same amount of money on the first prize. The contributions of the paper are: (a) a causal graph that encodes relationships among factors affecting crowdsourcing contests, derived from game-theoretic models and empirical studies, and (b) a quantification of the causal effects of these factors on the outcomes of GrabCAD, Cambridge, MA contests. The implications of these results on the design of future design crowdsourcing contests are discussed.

Commentary by Dr. Valentin Fuster

Research Papers: Design of Mechanisms and Robotic Systems

J. Mech. Des. 2018;140(9):092301-092301-10. doi:10.1115/1.4040173.

Programmable multistable mechanisms (PMM) exhibit a modifiable stability behavior in which the number of stable states, stiffness, and reaction force characteristics are controlled via their programming inputs. In this paper, we present experimental characterization for the concept of stability programing introduced in our previous work (Zanaty et al., 2018, “Programmable Multistable Mechanisms: Synthesis and Modeling,” ASME J. Mech. Des., 140(4), p. 042301.) A prototype of the T-combined axially loaded double parallelogram mechanisms (DPM) with rectangular hinges is manufactured using electrodischarge machining (EDM). An analytical model based on Euler–Bernoulli equations of the T-mechanism is derived from which the stability behavior is extracted. Numerical simulations and experimental measurements are conducted on programming the mechanism as monostable, bistable, tristable, and quadrastable, and show good agreement with our analytical derivations within 10%.

Commentary by Dr. Valentin Fuster

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In