0

Newest Issue


Research Papers: Design Automation

J. Mech. Des. 2018;140(4):041401-041401-12. doi:10.1115/1.4038927.
FREE TO VIEW

This paper deals with the development and validation of a semi-analytical tire model able to compute the forces at the interface between tire and rim. The knowledge of the forces acting on the rim is of crucial importance for the lightweight design of wheels. The proposed model requires a limited set of data to be calibrated. The model is compared with complete finite element (FE) models of the tire and rim. Despite its simplicity, the semi-analytical model is able to predict the forces acting on the rim, in agreement with the forces computed by complete FE models. The stress state in the wheel rim, computed by the developed semi-analytical model matches fairly well the corresponding stress state coming from experimental tests.

Commentary by Dr. Valentin Fuster

Research Papers: Design for Manufacture and the Life Cycle

J. Mech. Des. 2018;140(4):041701-041701-13. doi:10.1115/1.4038923.

Part consolidation (PC) is one of the typical design freedoms enabled by additive manufacturing (AM) processes. However, how to select potential candidates for PC is rarely discussed. This deficiency has hindered AM from wider applications in industry. Currently available design guidelines are based on obsolete heuristic rules provided for conventional manufacturing processes. This paper first revises these rules to take account of AM constraints and lifecycle factors so that efforts can be saved and used at the downstream detailed design stage. To automate the implementation of these revised rules, a numerical approach named PC candidate detection (PCCD) framework is proposed. This framework is comprised of two steps: construct functional and physical interaction (FPI) network and PCCD algorithm. FPI network is to abstractly represent the interaction relations between components as a graph whose nodes and edges have defined physical attributes. These attributes are taken as inputs for the PCCD algorithm to verify conformance to the revised rules. In this PCCD algorithm, verification sequence of rules, conflict handling, and the optimum grouping approach with the minimum part count are studied. Compared to manual ad hoc design practices, the proposed PCCD method shows promise in repeatability, retrievability, and efficiency. Two case studies of a throttle pedal and a tripod are presented to show the application and effectiveness of the proposed methods.

Commentary by Dr. Valentin Fuster

Research Papers: Design of Mechanisms and Robotic Systems

J. Mech. Des. 2018;140(4):042301-042301-13. doi:10.1115/1.4038926.

Compliant mechanisms can be classified according to the number of their stable states and are called multistable mechanisms if they have more than one stable state. We introduce a new family of mechanisms for which the number of stable states is modified by programming inputs. We call such mechanisms programmable multistable mechanisms (PMM). A complete qualitative analysis of a PMM, the T-mechanism, is provided including a description of its multistability as a function of the programming inputs. We give an exhaustive set of diagrams illustrating equilibrium states and their stiffness as one programming input varies while the other is fixed. Constant force behavior is also characterized. Our results use polynomial expressions for the reaction force derived from Euler–Bernoulli beam theory. Qualitative behavior follows from the evaluation of the zeros of the polynomial and its discriminant. These analytical results are validated by numerical finite element method simulations.

Commentary by Dr. Valentin Fuster

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In