0
Research Papers: Design for Manufacture and the Life Cycle

Mechanics of Three-Dimensional Printed Lattices for Biomedical Devices

[+] Author and Article Information
Paul F. Egan

Department of Mechanical Engineering,
Texas Tech University,
ME North 201,
Box 41021,
Lubbock, TX 79409 − 1021;
ETH Zurich,
Institute for Biomechanics,
Building HPP,
Honggerbergring 64,
Zurich 8093, Switzerland
e-mails: paul.egan@ttu.edu;
paul.egan.phd@gmail.com

Isabella Bauer

ETH Zurich,
Institute for Biomechanics,
Building HPP,
Honggerbergring 64,
Zurich 8093, Switzerland
e-mail: baueri@student.ethz.ch

Kristina Shea

ETH Zurich,
Department of Mechanical and
Process Engineering,
Building CLA,
Tannenstrasse 3,
Zurich 8092, Switzerland
e-mail: kshea@ethz.ch

Stephen J. Ferguson

ETH Zurich,
Institute for Biomechanics,
Building HPP,
Honggerbergring 64,
Zurich 8093, Switzerland
e-mail: sferguson@ethz.ch

1Corresponding author.

Contributed by the Design for Manufacturing Committee of ASME for publication in the JOURNAL OF MECHANICAL DESIGN. Manuscript received July 1, 2018; final manuscript received December 5, 2018; published online January 14, 2019. Assoc. Editor: Carolyn Seepersad.

J. Mech. Des 141(3), 031703 (Jan 14, 2019) (12 pages) Paper No: MD-18-1529; doi: 10.1115/1.4042213 History: Received July 01, 2018; Revised December 05, 2018

Advances in three-dimensional (3D) printing are enabling the design and fabrication of tailored lattices with high mechanical efficiency. Here, we focus on conducting experiments to mechanically characterize lattice structures to measure properties that inform an integrated design, manufacturing, and experiment framework. Structures are configured as beam-based lattices intended for use in novel spinal cage devices for bone fusion, fabricated with polyjet printing. Polymer lattices with 50% and 70% porosity were fabricated with beam diameters of 0.41.0mm, with measured effective elastic moduli from 28MPa to 213MPa. Effective elastic moduli decreased with higher lattice porosity, increased with larger beam diameters, and were highest for lattices compressed perpendicular to their original build direction. Cages were designed with 50% and 70% lattice porosities and included central voids for increased nutrient transport, reinforced shells for increased stiffness, or both. Cage stiffnesses ranged from 4.1kN/mm to 9.6kN/mm with yielding after 0.360.48mm displacement, thus suggesting their suitability for typical spinal loads of 1.65kN. The 50% porous cage with reinforced shell and central void was particularly favorable, with an 8.4kN/mm stiffness enabling it to potentially function as a stand-alone spinal cage while retaining a large open void for enhanced nutrient transport. Findings support the future development of fully integrated design approaches for 3D printed structures, demonstrated here with a focus on experimentally investigating lattice structures for developing novel biomedical devices.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Thompson, M. K. , Moroni, G. , Vaneker, T. , Fadel, G. , Campbell, R. I. , Gibson, I. , Bernard, A. , Schulz, J. , Graf, P. , and Ahuja, B. , 2016, “ Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints,” CIRP Ann. Manuf. Technol., 65(2), pp. 737–760. [CrossRef]
Deshpande, V. S. , Fleck, N. A. , and Ashby, M. F. , 2001, “ Effective Properties of the Octet-Truss Lattice Material,” J. Mech. Phys. Solids, 49(8), pp. 1747–1769. [CrossRef]
Zheng, X. , Lee, H. , Weisgraber, T. H. , Shusteff, M. , DeOtte, J. , Duoss, E. B. , Kuntz, J. D. , Biener, M. M. , Ge, Q. , and Jackson, J. A. , 2014, “ Ultralight, Ultrastiff Mechanical Metamaterials,” Science, 344(6190), pp. 1373–1377. [CrossRef] [PubMed]
Egan, P. F. , Shea, K. A. , and Ferguson, S. J. , 2018, “ Simulated Tissue Growth for 3D Printed Scaffolds,” Biomech. Model. Mechanobiol., 17(5), pp. 1481–1495. [CrossRef]
Wang, X. , Xu, S. , Zhou, S. , Xu, W. , Leary, M. , Choong, P. , Qian, M. , Brandt, M. , and Xie, Y. M. , 2016, “ Topological Design and Additive Manufacturing of Porous Metals for Bone Scaffolds and Orthopaedic Implants: A Review,” Biomaterials, 83, pp. 127–141. [CrossRef] [PubMed]
de Wild, M. , Zimmermann, S. , Rüegg, J. , Schumacher, R. , Fleischmann, T. , Ghayor, C. , and Weber, F. E. , 2016, “ Influence of Microarchitecture on Osteoconduction and Mechanics of Porous Titanium Scaffolds Generated by Selective Laser Melting,” 3D Printing Addit. Manuf., 3(3), pp. 142–151. [CrossRef]
Cheng, M.-Q. , Wahafu, T. , Jiang, G.-F. , Liu, W. , Qiao, Y.-Q. , Peng, X.-C. , Cheng, T. , Zhang, X.-L. , He, G. , and X.-y, L. , 2016, “ A Novel Open-Porous Magnesium Scaffold With Controllable Microstructures and Properties for Bone Regeneration,” Sci. Rep., 6, p. 24134. [CrossRef] [PubMed]
Paris, M. , Götz, A. , Hettrich, I. , Bidan, C. M. , Dunlop, J. W. , Razi, H. , Zizak, I. , Hutmacher, D. W. , Fratzl, P. , and Duda, G. N. , 2017, “ Scaffold Curvature-Mediated Novel Biomineralization Process Originates a Continuous Soft Tissue-to-Bone Interface,” Acta Biomater., 60, pp. 64–80. [CrossRef] [PubMed]
Egan, P. , Ferguson, S. , and Shea, K. , 2017, “ Design of Hierarchical 3D Printed Scaffolds Considering Mechanical and Biological Factors for Bone Tissue Engineering,” ASME J. Mech. Des., 139(6), p. 061401. [CrossRef]
Kengla, C. , Renteria, E. , Wivell, C. , Atala, A. , Yoo, J. J. , and Lee, S. J. , 2017, “ Clinically Relevant Bioprinting Workflow and Imaging Process for Tissue Construct Design and Validation,” 3D Print. Addit. Manuf., 4(4), pp. 239–247. [CrossRef]
Sanz-Herrera, J. , García-Aznar, J. , and Doblaré, M. , 2009, “ A Mathematical Approach to Bone Tissue Engineering,” Phil. Trans. R. Soc. A: Math., Phys. Eng. Sci., 367(1895), pp. 2055–2078. [CrossRef]
Habib, F. N. , Nikzad, M. , Masood, S. H. , and Saifullah, A. B. M. , 2016, “ Design and Development of Scaffolds for Tissue Engineering Using Three-Dimensional Printing for Bio-Based Applications,” 3D Print. Addit. Manuf., 3(2), pp. 119–127.
Arabnejad, S. , Johnston, R. B. , Pura, J. A. , Singh, B. , Tanzer, M. , and Pasini, D. , 2016, “ High-Strength Porous Biomaterials for Bone Replacement: A Strategy to Assess the Interplay Between Cell Morphology, Mechanical Properties, Bone Ingrowth and Manufacturing Constraints,” Acta Biomater., 30, pp. 345–356. [CrossRef] [PubMed]
Ashby, M. , 2006, “ The Properties of Foams and Lattices,” Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci., 364(1838), pp. 15–30. [CrossRef]
Ameta, G. , Lipman, R. , Moylan, S. , and Witherell, P. , 2015, “ Investigating the Role of Geometric Dimensioning and Tolerancing in Additive Manufacturing,” ASME J. Mech. Des., 137(11), p. 111401. [CrossRef]
Ravari, M. K. , Kadkhodaei, M. , Badrossamay, M. , and Rezaei, R. , 2014, “ Numerical Investigation on Mechanical Properties of Cellular Lattice Structures Fabricated by Fused Deposition Modeling,” Int. J. Mech. Sci., 88, pp. 154–161. [CrossRef]
Egan, P. F. , Gonella, V. C. , Engensperger, M. , Ferguson, S. J. , and Shea, K. , 2017, “ Computationally Designed Lattices With Tuned Properties for Tissue Engineering Using 3D Printing,” PLoS One, 12(8), p. e0182902. [CrossRef] [PubMed]
Egan, P. F. , Bauer, I. , Shea, K. , and Ferguson, S. J. , 2018, “ Integrative Design, Build, Test Approach for Biomedical Devices With Lattice Structures,” ASME Paper No. DETC2018-85355.
Chen, S.-H. , Tai, C.-L. , Lin, C.-Y. , Hsieh, P.-H. , and Chen, W.-P. , 2008, “ Biomechanical Comparison of a New Stand-Alone Anterior Lumbar Interbody Fusion Cage With Established Fixation Techniques—A Three-Dimensional Finite Element Analysis,” BMC Musculoskeletal Disord., 9, p. 88. [CrossRef]
Choi, K.-C. , Ryu, K.-S. , Lee, S.-H. , Kim, Y. H. , Lee, S. J. , and Park, C.-K. , 2013, “ Biomechanical Comparison of Anterior Lumbar Interbody Fusion: Stand-Alone Interbody Cage Versus Interbody Cage With Pedicle Screw Fixation—A Finite Element Analysis,” BMC Musculoskeletal Disord., 14, p. 220. [CrossRef]
Van de Kelft, E. , and Van Goethem, J. , 2015, “ Trabecular Metal Spacers as Standalone or With Pedicle Screw Augmentation, in Posterior Lumbar Interbody Fusion: A Prospective, Randomized Controlled Trial,” Eur. Spine J., 24(11), pp. 2597–2606. [CrossRef] [PubMed]
Lee, Y.-H. , Chung, C.-J. , Wang, C.-W. , Peng, Y.-T. , Chang, C.-H. , Chen, C.-H. , Chen, Y.-N. , and Li, C.-T. , 2016, “ Computational Comparison of Three Posterior Lumbar Interbody Fusion Techniques by Using Porous Titanium Interbody Cages With 50% Porosity,” Comput. Biol. Med., 71, pp. 35–45. [CrossRef] [PubMed]
Fradique, R. , Correia, T. , Miguel, S. , De Sa, K. , Figueira, D. , Mendonça, A. , and Correia, I. , 2016, “ Production of New 3D Scaffolds for Bone Tissue Regeneration by Rapid Prototyping,” J. Mater. Sci.: Mater. Med., 27, p. 69. [CrossRef] [PubMed]
Egan, P. F. , Moore, J. R. , Ehrlicher, A. J. , Weitz, D. A. , Schunn, C. , Cagan, J. , and LeDuc, P. , 2017, “ Robust Mechanobiological Behavior Emerges in Heterogeneous Myosin Systems,” Proc. Natl. Acad. Sci., 114(39), pp. E8147–E8154. [CrossRef]
Egan, P. , Cagan, J. , Schunn, C. , Chiu, F. , Moore, J. , and LeDuc, P. , 2016, “ The D3 Methodology: Bridging Science and Design for Bio-Based Product Development,” ASME J. Mech. Des., 138(8), p. 081101.
Wang, L. , He, K. , Chen, Z. , and Yang, Y. , 2017, “ A Design Method for Orthopedic Plates Based on Surface Features,” ASME J. Mech. Des., 139(2), p. 024502. [CrossRef]
Wynn, D. C. , and Eckert, C. M. , 2017, “ Perspectives on Iteration in Design and Development,” Res. Eng. Des., 28(2), pp. 153–184. [CrossRef]
Hollister, S. J. , Flanagan, C. L. , Zopf, D. A. , Morrison, R. J. , Nasser, H. , Patel, J. J. , Ebramzadeh, E. , Sangiorgio, S. N. , Wheeler, M. B. , and Green, G. E. , 2015, “ Design Control for Clinical Translation of 3D Printed Modular Scaffolds,” Ann. Biomed. Eng., 43(3), pp. 774–786. [CrossRef] [PubMed]
Dong, G. , Tang, Y. , and Zhao, Y. F. , 2017, “ A Survey of Modeling of Lattice Structures Fabricated by Additive Manufacturing,” ASME J. Mech. Des., 139(10), p. 100906. [CrossRef]
Kang, H. , Hollister, S. J. , La Marca, F. , Park, P. , and Lin, C.-Y. , 2013, “ Porous Biodegradable Lumbar Interbody Fusion Cage Design and Fabrication Using Integrated Global-Local Topology Optimization With Laser Sintering,” ASME J. Biomech. Eng., 135(10), p. 101013. [CrossRef]
Taniguchi, N. , Fujibayashi, S. , Takemoto, M. , Sasaki, K. , Otsuki, B. , Nakamura, T. , Matsushita, T. , Kokubo, T. , and Matsuda, S. , 2016, “ Effect of Pore Size on Bone Ingrowth Into Porous Titanium Implants Fabricated by Additive Manufacturing: An In Vivo Experiment,” Mater. Sci. Eng.: C, 59, pp. 690–701. [CrossRef]
Kopperdahl, D. L. , and Keaveny, T. M. , 1998, “ Yield Strain Behavior of Trabecular Bone,” J. Biomech., 31(7), pp. 601–608. [CrossRef] [PubMed]
Wilke, H. J. , Neef, P. , Caimi, M. , Hoogland, T. , and Claes, L. E. , 1999, “ New In Vivo Measurements of Pressures in the Intervertebral Disc in Daily Life,” Spine, 24(8), pp. 755–762. [CrossRef] [PubMed]
Marini, G. , Studer, H. , Huber, G. , Püschel, K. , and Ferguson, S. J. , 2016, “ Geometrical Aspects of Patient-specific Modelling of the Intervertebral Disc: Collagen Fibre Orientation and Residual Stress Distribution,” Mech. Model. Mechanobiol., 15(3), pp. 543–560. [CrossRef]
Roohani-Esfahani, S.-I. , Newman, P. , and Zreiqat, H. , 2016, “ Design and Fabrication of 3D Printed Scaffolds With a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects,” Sci. Rep., 6, p. 19468. [CrossRef] [PubMed]
Mueller, J. , Shea, K. , and Daraio, C. , 2015, “ Mechanical Properties of Parts Fabricated With Inkjet 3D Printing Through Efficient Experimental Design,” Mater. Des., 86, pp. 902–912. [CrossRef]
Ligon, S. C. , Liska, R. , Stampfl, J. , Gurr, M. , and Mülhaupt, R. , 2017, “ Polymers for 3D Printing and Customized Additive Manufacturing,” Chem. Rev., 117(15), pp. 10212–10290. [CrossRef] [PubMed]
Alifui-Segbaya, F. , Varma, S. , Lieschke, G. J. , and George, R. , 2017, “ Biocompatibility of Photopolymers in 3D Printing,” 3D Print. Addit. Manuf., 4(4), pp. 185–191. [CrossRef]
Barnawal, P. , Dorneich, M. C. , Frank, M. C. , and Peters, F. , 2017, “ Evaluation of Design Feedback Modality in Design for Manufacturability,” ASME J. Mech. Des., 139(9), p. 094503. [CrossRef]
Booth, J. W. , Alperovich, J. , Chawla, P. , Ma, J. , Reid, T. N. , and Ramani, K. , 2017, “ The Design for Additive Manufacturing Worksheet,” ASME J. Mech. Des., 139(10), p. 100904. [CrossRef]
Ahmed, M. , Islam, M. , Vanhoose, J. , and Rahman, M. , 2017, “ Comparisons of Elasticity Moduli of Different Specimens Made Through Three Dimensional Printing,” 3D Print. Addit. Manuf., 4(2), pp. 105–109. [CrossRef]
Oropallo, W. , and Piegl, L. A. , 2016, “ Ten Challenges in 3D Printing,” Eng. Comput., 32(1), pp. 135–148. [CrossRef]
Kim, S.-Y. , Shin, Y.-S. , Jung, H.-D. , Hwang, C.-J. , Baik, H.-S. , and Cha, J.-Y. , 2018, “ Precision and Trueness of Dental Models Manufactured With Different 3-Dimensional Printing Techniques,” Am. J. Orthod. Dentofacial Orthop., 153(1), pp. 144–153. [CrossRef] [PubMed]
Lopez, F. , Witherell, P. , and Lane, B. , 2016, “ Identifying Uncertainty in Laser Powder Bed Fusion Additive Manufacturing Models,” ASME J. Mech. Des., 138(11), p. 114502. [CrossRef]
Kadkhodapour, J. , Montazerian, H. , Darabi, A. C. , Anaraki, A. , Ahmadi, S. , Zadpoor, A. , and Schmauder, S. , 2015, “ Failure Mechanisms of Additively Manufactured Porous Biomaterials: Effects of Porosity and Type of Unit Cell,” J. Mech. Behav. Biomed. Mater., 50, pp. 180–191. [CrossRef] [PubMed]
Limmahakhun, S. , Oloyede, A. , Sitthiseripratip, K. , Xiao, Y. , and Yan, C. , 2017, “ 3D-Printed Cellular Structures for Bone Biomimetic Implants,” Addit. Manuf., 15, pp. 93–101. [CrossRef]
Smith, M. , Guan, Z. , and Cantwell, W. , 2013, “ Finite Element Modelling of the Compressive Response of Lattice Structures Manufactured Using the Selective Laser Melting Technique,” Int. J. Mech. Sci., 67, pp. 28–41. [CrossRef]
Weißmann, V. , Wieding, J. , Hansmann, H. , Laufer, N. , Wolf, A. , and Bader, R. , 2016, “ Specific Yielding of Selective Laser-Melted Ti6Al4V Open-Porous Scaffolds as a Function of Unit Cell Design and Dimensions,” Metals, 6(7), p. 166. [CrossRef]
Wieding, J. , Fritsche, A. , Heinl, P. , Körner, C. , Cornelsen, M. , Seitz, H. , Mittelmeier, W. , and Bader, R. , 2013, “ Biomechanical Behavior of Bone Scaffolds Made of Additive Manufactured Tricalciumphosphate and Titanium Alloy Under Different Loading Conditions,” J. Appl. Biomater. Funct. Mater., 11(3), pp. 159–166.
Melancon, D. , Bagheri, Z. , Johnston, R. , Liu, L. , Tanzer, M. , and Pasini, D. , 2017, “ Mechanical Characterization of Structurally Porous Biomaterials Built Via Additive Manufacturing: Experiments, Predictive Models, and Design Maps for Load-Bearing Bone Replacement Implants,” Acta Biomater., 63, pp. 350–368. [CrossRef] [PubMed]
Mehdizadeh, H. , Somo, S. I. , Bayrak, E. S. , Brey, E. M. , and Cinar, A. , 2015, “ Design of Polymer Scaffolds for Tissue Engineering Applications,” Ind. Eng. Chem. Res., 54, pp. 2317–2328. [CrossRef]
Cramer, A. D. , Challis, V. J. , and Roberts, A. P. , 2017, “ Physically Realizable Three-Dimensional Bone Prosthesis Design With Interpolated Microstructures,” ASME J. Biomech. Eng., 139(3), p. 031013. [CrossRef]
Bashkuev, M. , Checa, S. , Postigo, S. , Duda, G. , and Schmidt, H. , 2015, “ Computational Analyses of Different Intervertebral Cages for Lumbar Spinal Fusion,” J. Biomech., 48(12), pp. 3274–3282. [CrossRef] [PubMed]
Tsai, P.-I. , Hsu, C.-C. , Chen, S.-Y. , Wu, T.-H. , and Huang, C.-C. , 2016, “ Biomechanical Investigation Into the Structural Design of Porous Additive Manufactured Cages Using Numerical and Experimental Approaches,” Comput. Biol. Med., 76, pp. 14–23. [CrossRef] [PubMed]
Abràmoff, M. D. , Magalhães, P. J. , and Ram, S. J. , 2004, “ Image Processing With ImageJ,” Biophotonics Int., 11(7), pp. 36–42. https://imagescience.org/meijering/publications/download/bio2004.pdf
Busscher, I. , Ploegmakers, J. J. , Verkerke, G. J. , and Veldhuizen, A. G. , 2010, “ Comparative Anatomical Dimensions of the Complete Human and Porcine Spine,” Eur. Spine J., 19(7), pp. 1104–1114. [CrossRef] [PubMed]
Campoli, G. , Borleffs, M. , Yavari, S. A. , Wauthle, R. , Weinans, H. , and Zadpoor, A. A. , 2013, “ Mechanical Properties of Open-Cell Metallic Biomaterials Manufactured Using Additive Manufacturing,” Mater. Des., 49, pp. 957–965. [CrossRef]
Luxner, M. H. , Stampfl, J. , and Pettermann, H. E. , 2005, “ Finite Element Modeling Concepts and Linear Analyses of 3D Regular Open Cell Structures,” J. Mater. Sci., 40(22), pp. 5859–5866. [CrossRef]
Stanković, T. , Mueller, J. , and Shea, K. , 2017, “ The Effect of Anisotropy on the Optimization of Additively Manufactured Lattice Structures,” Addit. Manuf., 17, pp. 67–76. [CrossRef]
Diebels, S. , and Steeb, H. , 2002, “ The Size Effect in Foams and Its Theoretical and Numerical Investigation,” Proc. R. Soc. London A, 458(2028), pp. 2869–2883.
Maskery, I. , Aremu, A. , Parry, L. , Wildman, R. , Tuck, C. , and Ashcroft, I. , 2018, “ Effective Design and Simulation of Surface-Based Lattice Structures Featuring Volume Fraction and Cell Type Grading,” Mater. Des., 155, pp. 220–232. https://www.sciencedirect.com/science/article/pii/S026412751830443X
Rohlmann, A. , Pohl, D. , Bender, A. , Graichen, F. , Dymke, J. , Schmidt, H. , and Bergmann, G. , 2014, “ Activities of Everyday Life With High Spinal Loads,” PLoS One, 9(5), p. e98510. [CrossRef] [PubMed]
Meza, L. R. , Zelhofer, A. J. , Clarke, N. , Mateos, A. J. , Kochmann, D. M. , and Greer, J. R. , 2015, “ Resilient 3D Hierarchical Architected Metamaterials,” Proc. Natl. Acad. Sci., 112(37), pp. 11502–11507. [CrossRef]
Maggi, A. , Li, H. , and Greer, J. R. , 2017, “ Three-Dimensional Nano-Architected Scaffolds With Tunable Stiffness for Efficient Bone Tissue Growth,” Acta Biomater., 63, pp. 294–305. [CrossRef] [PubMed]
Maggi, A. , Allen, J. , Desai, T. , and Greer, J. R. , 2017, “ Osteogenic Cell Functionality on 3-Dimensional Nano-Scaffolds With Varying Stiffness,” Extreme Mech. Lett., 13, pp. 1–9. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Design, manufacturing, and experiment approach, shown for 3D printed lattices in spinal cage devices

Grahic Jump Location
Fig. 2

Designed lattice samples

Grahic Jump Location
Fig. 3

Support material removal for samples (a) as-printed, (b) after external support removal, (c) in chemical bath, and (d) cleaned (10mm length indicator)

Grahic Jump Location
Fig. 4

Lattice in-plane and out-of-plane compression testing, with indicated build direction (0.5mm scale bars), sample height, and circled region indicating a broken beam from the build/clean process

Grahic Jump Location
Fig. 5

(a) Designed spinal cage devices with varied configuration strategies and (b) schematic indicating labeled faces, build direction, and height h

Grahic Jump Location
Fig. 6

Top and side faces of samples (0.5mm scale bar)

Grahic Jump Location
Fig. 7

Measured beam diameters on (a) top and (b) side faces for porosity P=50% samples and (c) top and (d) side faces for P=70% samples; dotted lines represent ideal match between design and measurement

Grahic Jump Location
Fig. 8

Effective elastic modulus as porosity and beam diameter varies, with linear regression fits

Grahic Jump Location
Fig. 9

Effective elastic modulus for in-plane and out-of-plane compression orientations

Grahic Jump Location
Fig. 10

Effective elastic modulus after two and four weeks in varied conditions for (a) porosity P=50% and (b) P=70% samples compared to control (solid line)

Grahic Jump Location
Fig. 11

Fabricated cage devices (10mm length indicator)

Grahic Jump Location
Fig. 12

Mechanically tested cages for (a) mean force–displacement and (b) stiffness

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In