Zirbel,
S. A.
,
Lang,
R. J.
,
Thomson,
M. W.
,
Sigel,
D. A.
,
Walkemeyer,
P. E.
,
Trease,
B. P.
,
Magleby,
S. P.
, and
Howell,
L. L.
, 2013, “
Accommodating Thickness in Origami-Based Deployable Arrays,” ASME J. Mech. Des.,
135(11), p. 111005.

[CrossRef]
Schenk,
M.
,
Viquerat,
A. D.
,
Seffen,
K. A.
, and
Guest,
S. D.
, 2014, “
Review of Inflatable Booms for Deployable Space Structures: Packing and Rigidization,” J. Spacecr. Rockets,
51(3), pp. 762–778.

Kuribayashi,
K.
,
Tsuchiya,
K.
,
You,
Z.
,
Tomus,
D.
,
Umemoto,
M.
,
Ito,
T.
, and
Sasaki,
M.
, 2006, “
Self-Deployable Origami Stent Grafts as a Biomedical Application of Ni-Rich TiNi Shape Memory Alloy Foil,” Mater. Sci. Eng., A,
419(1–2), pp. 131–137.

[CrossRef]
Silverberg,
J. L.
,
Evans,
A. A.
,
McLeod,
L.
,
Hayward,
R. C.
,
Hull,
T.
,
Santangelo,
C. D.
, and
Cohen,
I.
, 2014, “
Using Origami Design Principles to Fold Reprogrammable Mechanical Metamaterials,” Science,
345(6197), pp. 647–650.

[CrossRef] [PubMed]
Boatti,
E.
,
Vasios,
N.
, and
Bertoldi,
K.
, 2017, “
Origami Metamaterials for Tunable Thermal Expansion,” Adv. Mater.,
29(26), p. 1700360.

[CrossRef]
Gattas,
J.
, and
You,
Z.
, 2015, “
The Behaviour of Curved-Crease Foldcores Under Low-Velocity Impact Loads,” Int. J. Solids Struct.,
53, pp. 80–91.

[CrossRef]
Balkcom,
D. J.
, and
Mason,
M. T.
, 2008, “
Robotic Origami Folding,” Int. J. Rob. Res.,
27(5), pp. 613–627.

[CrossRef]
Onal,
C. D.
,
Wood,
R. J.
, and
Rus,
D.
, 2013, “
An Origami-Inspired Approach to Worm Robots,” IEEE/ASME Trans. Mechatronics,
18(2), pp. 430–438.

[CrossRef]
Pagano,
A.
,
Yan,
T.
,
Chien,
B.
,
Wissa,
A.
, and
Tawfick,
S.
, 2017, “
A Crawling Robot Driven by Multi-Stable Origami,” Smart Mater. Struct.,
26(9), p. 094007.

[CrossRef]
Fuchi,
K.
,
Tang,
J.
,
Crowgey,
B.
,
Diaz,
A. R.
,
Rothwell,
E. J.
, and
Ouedraogo,
R. O.
, 2012, “
Origami Tunable Frequency Selective Surfaces,” IEEE Antennas Wireless Propag. Lett.,
11, pp. 473–475.

[CrossRef]
Liu,
X.
,
Yao,
S.
,
Cook,
B. S.
,
Tentzeris,
M. M.
, and
Georgakopoulos,
S. V.
, 2015, “
An Origami Reconfigurable Axial-Mode Bifilar Helical Antenna,” IEEE Trans. Antennas Propag.,
63(12), pp. 5897–5903.

[CrossRef]
Peraza-Hernandez,
E. A.
,
Hartl,
D. J.
,
Malak
,
R. J., Jr.
, and
Lagoudas,
D. C.
, 2014, “
Origami-Inspired Active Structures: A Synthesis and Review,” Smart Mater. Struct.,
23(9), p. 094001.

[CrossRef]
Turner,
N.
,
Goodwine,
B.
, and
Sen,
M.
, 2016, “
A Review of Origami Applications in Mechanical Engineering,” Inst. Mech. Eng., Part C,
230(14), pp. 2345–2362.

Tachi,
T.
, 2006, “
3D Origami Design Based on Tucking Molecule,” Fourth International Conference on Origami in Science, Mathematics, and Education, Pasadena, CA, Sept. 8–10, pp. 259–272.

http://www.tsg.ne.jp/TT/cg/3DOrigamiDesign_tachi_4OSME.pdf
Lang,
R. J.
, 1996, “
A Computational Algorithm for Origami Design,” 12th Annual Symposium on Computational Geometry, Philadelphia, PA, May 24–26, pp. 98–105.

Lang,
R.
, 2011, Origami Design Secrets: Mathematical Method for an Ancient Art, 2nd ed.,
AK Peters/CRC Press,
Boca Raton, FL.

Demaine,
E. D.
, and
O'Rourke,
J.
, 2007, Geometric Folding Algorithms,
Cambridge University Press, New York.

Belcastro,
S.-M.
, and
Hull,
T.
, 2002, “
Modelling the Folding of Paper Into Three Dimensions Using Affine Transformations,” Linear Algebra Appl.,
348(1–3), pp. 273–282.

[CrossRef]
Belcastro,
S.-M.
, and
Hull,
T.
, 2002, “
A Mathematical Model for Non-Flat Origami,” Third International Meeting of Origami Mathematics, Science, and Education, Monterey, CA, pp. 39–51.

Tachi,
T.
, 2010, “
Origamizing Polyhedral Surfaces,” IEEE Trans. Visualization Comput. Graph.,
16(2), pp. 298–311.

[CrossRef]
Peraza-Hernandez,
E. A.
,
Hartl,
D. J.
, and
Lagoudas,
D. C.
, 2017, “
Design and Simulation of Origami Structures With Smooth Folds,” Proc. R. Soc. A,
473(2200), p. 20160716.

Zhou,
X.
,
Wang,
H.
, and
You,
Z.
, 2015, “
Design of Three-Dimensional Origami Structures Based on a Vertex Approach,” Proc. R. Soc. A,
471(2181), p. 20150407.

Martínez-Martín,
F.
, and
Thrall,
A.
, 2014, “
Honeycomb Core Sandwich Panels for Origami-Inspired Deployable Shelters: Multi-Objective Optimization for Minimum Weight and Maximum Energy Efficiency,” Eng. Struct.,
69, pp. 158–167.

[CrossRef]
Peraza-Hernandez,
E.
,
Hartl,
D.
,
Galvan,
E.
, and
Malak,
R.
, 2013, “
Design and Optimization of a Shape Memory Alloy-Based Self-Folding Sheet,” ASME J. Mech. Des.,
135(11), p. 111007.

[CrossRef]
Bowen,
L.
,
Springsteen,
K.
,
Frecker,
M.
, and
Simpson,
T.
, 2016, “
Trade Space Exploration of Magnetically Actuated Origami Mechanisms,” ASME J. Mech. Rob.,
8(3), p. 031012.

[CrossRef]
Sigmund,
O.
, 1997, “
On the Design of Compliant Mechanisms Using Topology Optimization,” J. Struct. Mech.,
25(4), pp. 493–524.

Sigmund,
O.
, and
Petersson,
J.
, 1998, “
Numerical Instabilities in Topology Optimization: A Survey on Procedures Dealing With Checkerboards, Mesh-Dependencies and Local Minima,” Struct. Multidiscip. Optim.,
16(1), pp. 68–75.

[CrossRef]
Sigmund,
O.
, 2001, “
A 99 Line Topology Optimization Code Written in MATLAB,” Struct. Multidiscip. Optim.,
21(2), pp. 120–127.

[CrossRef]
Bendsøe,
M. P.
, and
Sigmund,
O.
, 2003, Topology Optimization: Theory, Methods and Applications,
Springer, Berlin.

Bendsøe,
M. P.
, and
Kikuchi,
N.
, 1988, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method,” Comput. Methods Appl. Mech. Eng.,
71(2), pp. 197–224.

[CrossRef]
Fuchi,
K.
, and
Diaz,
A. R.
, 2013, “
Origami Design by Topology Optimization,” ASME J. Mech. Des.,
135(11), p. 111003.

[CrossRef]
Fuchi,
K.
,
Buskohl,
P. R.
,
Bazzan,
G.
,
Durstock,
M. F.
,
Reich,
G. W.
,
Vaia,
R. A.
, and
Joo,
J. J.
, 2015, “
Origami Actuator Design and Networking Through Crease Topology Optimization,” ASME J. Mech. Des.,
137(9), p. 091401.

[CrossRef]
Fuchi,
K.
,
Buskohl,
P. R.
,
Bazzan,
G.
,
Durstock,
M. F.
,
Reich,
G. W.
,
Vaia,
R. A.
, and
Joo,
J. J.
, 2016, “
Design Optimization Challenges of Origami-Based Mechanisms With Sequenced Folding,” ASME J. Mech. Rob.,
8(5), p. 051011.

[CrossRef]
Tachi,
T.
, 2010, “
Freeform Rigid-Foldable Structure Using Bidirectionally Flat-Foldable Planar Quadrilateral Mesh,” Advances in Architectural Geometry, Springer, Vienna, Austria, pp. 87–102.

Schenk,
M.
, and
Guest,
S. D.
, 2011, “
Origami Folding: A Structural Engineering Approach,” Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education, CRC Press, Boca Raton, FL, pp. 291–304.

Liu,
K.
, and
Paulino,
G.
, 2017, “
Nonlinear Mechanics of Non-Rigid Origami: An Efficient Computational Approach,” Proc. R. Soc. A,
473(2206), p. 20170348.

[CrossRef]
Filipov,
E.
,
Liu,
K.
,
Tachi,
T.
,
Schenk,
M.
, and
Paulino,
G.
, 2017, “
Bar and Hinge Models for Scalable Analysis of Origami,” Int. J. Solids Struct.,
124, pp. 26–45.

[CrossRef]
Gillman,
A.
,
Fuchi,
K.
, and
Buskohl,
P. R.
, 2018, “
Truss-Based Nonlinear Mechanical Analysis for Origami Structures Exhibiting Bifurcation and Limit Point Instabilities,” Int. J. Solids Struct.,
147, pp. 80–93.

[CrossRef]
Greco,
M.
,
Gesualdo,
F.
,
Venturini,
W.
, and
Coda,
H.
, 2006, “
Nonlinear Positional Formulation for Space Truss Analysis,” Finite Elem. Anal. Des.,
42(12), pp. 1079–1086.

[CrossRef]
Svanberg,
K.
, 1987, “
The Method of Moving Asymptotes—A New Method for Structural Optimization,” Int. J. Numer. Methods Eng.,
24(2), pp. 359–373.

[CrossRef]
Gill,
P.
,
Murray,
W.
, and
Wright,
M.
, 1991, Numerical Linear Algebra and Optimization,
Addison Wesley, New York.

Byrd,
R. H.
,
Gilbert,
J. C.
, and
Nocedal,
J.
, 2000, “
A Trust Region Method Based on Interior Point Techniques for Nonlinear Programming,” Math. Program.,
89(1), pp. 149–185.

[CrossRef]MATLAB, 2016, Version 9.1.0 (R2016b),
The MathWorks Inc.,
Natick, MA.

Kepner,
J.
, and
Ahalt,
S.
, 2004, “
MATLABMPI,” J. Parallel Distributed Comput.,
64(8), pp. 997–1005.

[CrossRef]
Gillman,
A.
,
Fuchi,
K.
,
Bazzan,
G.
,
Alyanak,
E. J.
, and
Buskohl,
P. R.
, 2017, “
Discovering Origami Fold Patterns With Optimal Actuation Through Nonlinear Mechanics Analysis,” ASME Paper No. DETC2017–67927.