Mankame,
N. D.
, and
Ananthasuresh,
G.
, 2004, “
Topology Optimization for Synthesis of Contact-Aided Compliant Mechanisms Using Regularized Contact Modeling,” Comput. Struct.,
82(15–16), pp. 1267–1290.

[CrossRef]
Kumar,
P.
,
Sauer,
R. A.
, and
Saxena,
A.
, 2016, “
Synthesis of c

^{0} Path-Generating Contact-Aided Compliant Mechanisms Using the Material Mask Overlay Method,” ASME J. Mech. Des.,
138(6), p. 062301.

[CrossRef]
Wriggers,
P.
, 2006, Computational Contact Mechanics,
Springer, Heidelberg, Germany.

Howell,
L. L.
, 2001, Compliant Mechanisms,
Wiley, New York.

Ananthasuresh,
G.
,
Kota,
S.
, and
Gianchandani,
Y.
, 1994, “
A Methodical Approach to the Design of Compliant Micromechanisms,” Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, pp. 189–192.

Nishiwaki,
S.
,
Frecker,
M. I.
,
Min,
S.
, and
Kikuchi,
N.
, 1998, “
Topology Optimization of Compliant Mechanisms Using the Homogenization Method,” Int. J. Numer. Methods Eng.,
42(3), pp. 535–559.

[CrossRef]
Frecker,
M.
,
Ananthasuresh,
G.
,
Nishiwaki,
S.
,
Kikuchi,
N.
, and
Kota,
S.
, 1997, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization,” ASME J. Mech. Des.,
119(2), pp. 238–245.

[CrossRef]
Saxena,
A.
, and
Ananthasuresh,
G.
, 2000, “
On an Optimal Property of Compliant Topologies,” Struct. Multidiscip. Optim.,
19(1), pp. 36–49.

[CrossRef]
Sigmund,
O.
, 1997, “
On the Design of Compliant Mechanisms Using Topology Optimization,” J. Struct. Mech.,
25(4), pp. 493–524.

Saxena,
A.
, and
Ananthasuresh,
G.
, 2001, “
Topology Synthesis of Compliant Mechanisms for Nonlinear Force-Deflection and Curved Path Specifications,” ASME J. Mech. Des.,
123(1), pp. 33–42.

[CrossRef]
Pedersen,
C. B.
,
Buhl,
T.
, and
Sigmund,
O.
, 2001, “
Topology Synthesis of Large-Displacement Compliant Mechanisms,” Int. J. Numer. Methods Eng.,
50(12), pp. 2683–2705.

[CrossRef]
Saxena,
A.
, 2005, “
Synthesis of Compliant Mechanisms for Path Generation Using Genetic Algorithm,” ASME J. Mech. Des.,
127(4), pp. 745–752.

[CrossRef]
Swan,
C. C.
, and
Rahmatalla,
S. F.
, 2004, “
Design and Control of Path-Following Compliant Mechanisms,” ASME Paper No. DETC2004-57441.

Ullah,
I.
, and
Kota,
S.
, 1997, “
Optimal Synthesis of Mechanisms for Path Generation Using Fourier Descriptors and Global Search Methods,” ASME J. Mech. Des.,
119(4), pp. 504–510.

[CrossRef]
Zahn,
C. T.
, and
Roskies,
R. Z.
, 1972, “
Fourier Descriptors for Plane Closed Curves,” IEEE Trans. Comput.,
100(3), pp. 269–281.

[CrossRef]
Rai,
A. K.
,
Saxena,
A.
, and
Mankame,
N. D.
, 2007, “
Synthesis of Path Generating Compliant Mechanisms Using Initially Curved Frame Elements,” ASME J. Mech. Des.,
129(10), pp. 1056–1063.

[CrossRef]
Rai,
A. K.
,
Saxena,
A.
, and
Mankame,
N. D.
, 2010, “
Unified Synthesis of Compact Planar Path-Generating Linkages With Rigid and Deformable Members,” Struct. Multidiscip. Optim.,
41(6), pp. 863–879.

[CrossRef]
Saxena,
A.
, 2008, “
A Material-Mask Overlay Strategy for Continuum Topology Optimization of Compliant Mechanisms Using Honeycomb Discretization,” ASME J. Mech. Des.,
130(8), p. 082304.

[CrossRef]
Saxena,
A.
, 2011, “
An Adaptive Material Mask Overlay Method: Modifications and Investigations on Binary, Well Connected Robust Compliant Continua,” ASME J. Mech. Des.,
133(4), p. 041004.

[CrossRef]
Saxena,
A.
, 2011, “
Topology Design With Negative Masks Using Gradient Search,” Struct. Multidiscip. Optim.,
44(5), pp. 629–649.

[CrossRef]
Saxena,
A.
, and
Sauer,
R. A.
, 2013, “
Combined Gradient-Stochastic Optimization With Negative Circular Masks for Large Deformation Topologies,” Int. J. Numer. Methods Eng.,
93(6), pp. 635–663.

[CrossRef]
Mankame,
N. D.
, and
Ananthasuresh,
G.
, 2002, “
Contact Aided Compliant Mechanisms: Concept and Preliminaries,” ASME Paper No. DETC2002/MECH-34211.

Mankame,
N.
, and
Ananthasuresh,
G.
, 2007, “
Synthesis of Contact-Aided Compliant Mechanisms for Non-Smooth Path Generation,” Int. J. Numer. Methods Eng.,
69(12), pp. 2564–2605.

[CrossRef]
Reddy,
B. V. S. N.
,
Naik,
S. V.
, and
Saxena,
A.
, 2012, “
Systematic Synthesis of Large Displacement Contact-Aided Monolithic Compliant Mechanisms,” ASME J. Mech. Des.,
134(1), p. 011007.

[CrossRef]
Tummala,
Y.
,
Wissa,
A.
,
Frecker,
M.
, and
Hubbard,
J. E.
, 2014, “
Design and Optimization of a Contact-Aided Compliant Mechanism for Passive Bending,” ASME J. Mech. Rob.,
6(3), p. 031013.

[CrossRef]
Kumar,
P.
,
Saxena,
A.
, and
Sauer,
R. A.
, 2017, “
Implementation of Self Contact in Path Generating Compliant Mechanisms,” Microactuators and Micromechanisms,
Springer, Cham, pp. 251–261.

Cannon,
J. R.
, and
Howell,
L. L.
, 2005, “
A Compliant Contact-Aided Revolute Joint,” Mech. Mach. Theory,
40(11), pp. 1273–1293.

[CrossRef]
Moon,
Y.-M.
, 2007, “
Bio-Mimetic Design of Finger Mechanism With Contact Aided Compliant Mechanism,” Mech. Mach. Theory,
42(5), pp. 600–611.

[CrossRef]
Aguirre,
M.
,
Hayes,
G.
,
Frecker,
M.
,
Adair,
J.
, and
Antolino,
N.
, “
Fabrication and Design of a Nanoparticulate Enabled Micro Forceps,” ASME Paper No. DETC2008-49917.

Mehta,
V.
,
Frecker,
M.
, and
Lesieutre,
G. A.
, 2009, “
Stress Relief in Contact-Aided Compliant Cellular Mechanisms,” ASME J. Mech. Des.,
131(9), p. 091009.

[CrossRef]
Saxena,
A.
, 2013, “
A Contact-Aided Compliant Displacement-Delimited Gripper Manipulator,” ASME J. Mech. Rob.,
5(4), p. 041005.

[CrossRef]
Calogero,
J.
,
Frecker,
M.
,
Hasnain,
Z.
, and
Hubbard,
J. E., Jr
, 2016, “
A Dynamic Spar Numerical Model for Passive Shape Change,” Smart Mater. Struct.,
25(10), p. 104006.

[CrossRef]
Sauer,
R. A.
, and
De Lorenzis,
L.
, 2015, “
An Unbiased Computational Contact Formulation for 3d Friction,” Int. J. Numer. Methods Eng.,
101(4), pp. 251–280.

[CrossRef]
Saxena,
R.
, and
Saxena,
A.
, “
On Honeycomb Parameterization for Topology Optimization of Compliant Mechanisms,” ASME Paper No. DETC2003/DAC-48806.

Langelaar,
M.
, 2007, “
The Use of Convex Uniform Honeycomb Tessellations in Structural Topology Optimization,” Seventh World Congress on Structural and Multidisciplinary Optimization, Seoul, South Korea, May 21–25, pp. 21–25.

Saxena,
R.
, and
Saxena,
A.
, 2007, “
On Honeycomb Representation and Sigmoid Material Assignment in Optimal Topology Synthesis of Compliant Mechanisms,” Finite Elem. Anal. Des.,
43(14), pp. 1082–1098.

[CrossRef]
Talischi,
C.
,
Paulino,
G. H.
, and
Le,
C. H.
, 2009, “
Honeycomb Wachspress Finite Elements for Structural Topology Optimization,” Struct. Multidiscip. Optim.,
37(6), pp. 569–583.

[CrossRef]
Talischi,
C.
,
Paulino,
G. H.
,
Pereira,
A.
, and
Menezes,
I. F.
, 2012, “
Polytop: A Matlab Implementation of a General Topology Optimization Framework Using Unstructured Polygonal Finite Element Meshes,” Struct. Multidiscip. Optim.,
45(3), pp. 329–357.

[CrossRef]
Saxena,
A.
, 2010, “
On an Adaptive Mask Overlay Topology Synthesis Method,” ASME Paper No. DETC2010-29113.

Talischi,
C.
,
Paulino,
G. H.
,
Pereira,
A.
, and
Menezes,
I. F.
, 2012, “
Polymesher: A General-Purpose Mesh Generator for Polygonal Elements Written in Matlab,” Struct. Multidiscip. Optim.,
45(3), pp. 309–328.

[CrossRef]
Talischi,
C.
,
Paulino,
G. H.
,
Pereira,
A.
, and
Menezes,
I. F.
, 2010, “
Polygonal Finite Elements for Topology Optimization: A Unifying Paradigm,” Int. J. Numer. Methods Eng.,
82(6), pp. 671–698.

Kumar,
P.
, and
Saxena,
A.
, 2015, “
On Topology Optimization With Embedded Boundary Resolution and Smoothing,” Struct. Multidiscip. Optim.,
52(6), pp. 1135–1159.

[CrossRef]
Corbett,
C. J.
, and
Sauer,
R. A.
, 2014, “
Nurbs-Enriched Contact Finite Elements,” Comput. Methods Appl. Mech. Eng.,
275, pp. 55–75.

[CrossRef]
Kumar,
P.
, and
Saxena,
A.
, 2013, “
On Embedded Recursive Boundary Smoothing in Topology Optimization With Polygonal Mesh and Negative Masks,” First International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013), Roorkee, India, Dec. 18–20, pp. 568–575.

Floater,
M. S.
, 2003, “
Mean Value Coordinates,” Comput. Aided Geom. Des.,
20(1), pp. 19–27.

[CrossRef]
Hormann,
K.
, and
Floater,
M. S.
, 2006, “
Mean Value Coordinates for Arbitrary Planar Polygons,” ACM Trans. Graph.,
25(4), pp. 1424–1441.

[CrossRef]
Sukumar,
N.
, and
Tabarraei,
A.
, 2004, “
Conforming Polygonal Finite Elements,” Int. J. Numer. Methods Eng.,
61(12), pp. 2045–2066.

[CrossRef]
Sukumar,
N.
, and
Malsch,
E.
, 2006, “
Recent Advances in the Construction of Polygonal Finite Element Interpolants,” Arch. Comput. Methods Eng.,
13(1), pp. 129–163.

[CrossRef]
Zienkiewicz,
O. C.
, and
Taylor,
R. L.
, 2005, The Finite Element Method for Solid and Structural Mechanics, Butterworth-Heinemann, Oxford, UK.

Wriggers,
P.
, 2008, Nonlinear Finite Element Methods,
Springer Science & Business Media, Berlin, Germany.

Kumar,
P.
, 2017, “
Synthesis of Large Deformable Contact-Aided Compliant Mechanisms Using Hexagonal Cells and Negative Circular Masks,” Ph.D. thesis, Indian Institute of Technology Kanpur, Kanpur, India.

Knuth,
D. E.
, 1998, The Art of Computer Programming: Sorting and Searching, Vol.
3,
Pearson Education, Upper Saddle River, NJ.

Russell,
S. J.
, and
Norvig,
P.
, 2003, Artificial Intelligence: A Modern Approach, 2nd ed.,
Pearson Education, Upper Saddle River, NJ.

Tikhonov,
A. N.
,
Goncharsky,
A.
,
Stepanov,
V.
, and
Yagola,
A. G.
, 2013, Numerical Methods for the Solution of Ill-Posed Problems, Vol.
328,
Springer Science & Business Media, Dordrecht, The Netherlands.

Kumar,
P.
,
Sauer,
R. A.
, and
Saxena,
A.
, 2015, “
On Synthesis of Contact Aided Compliant Mechanisms Using the Material Mask Overlay Method,” ASME Paper No. DETC2015-47064.

Guest,
J. K.
,
Prévost,
J.
, and
Belytschko,
T.
, 2004, “
Achieving Minimum Length Scale in Topology Optimization Using Nodal Design Variables and Projection Functions,” Int. J. Numer. Methods Eng.,
61(2), pp. 238–254.

[CrossRef]
Canfield,
S. L.
,
Chlarson,
D. L.
,
Shibakov,
A.
,
Richardson,
J. D.
, and
Saxena,
A.
, 2007, “
Multi-Objective Optimization of Compliant Mechanisms Including Failure Theories,” ASME Paper No. DETC2007-35618.