Zegard,
T.
, and
Paulino,
G. H.
, 2016, “Bridging Topology Optimization and Additive Manufacturing,” Struct. Multidiscip. Optim.,
53(1), pp. 175–192.

[CrossRef]
Deaton,
J. D.
, and
Grandhi,
R. V.
, 2014, “A Survey of Structural and Multidisciplinary Continuum Topology Optimization: Post 2000,” Struct. Multidiscip. Optim.,
49(1), pp. 1–38.

[CrossRef]
Bendsoe,
M. P.
, and
Sigmund,
O.
, 2013, Topology Optimization: Theory, Methods, and Applications,
Springer Science & Business Media, Berlin.

Sigmund,
O.
, 2001, “A 99 Line Topology Optimization Code Written in

MATLAB,” Struct. Multidiscip. Optim.,
21(2), pp. 120–127.

[CrossRef]
Zhou,
M.
, and
Rozvany,
G.
, 1991, “The Coc Algorithm, Part Ii: Topological, Geometrical and Generalized Shape Optimization,” Comput. Methods Appl. Mech. Eng.,
89(1–3), pp. 309–336.

[CrossRef]
Bendsøe,
M. P.
, and
Kikuchi,
N.
, 1988, “Generating Optimal Topologies in Structural Design Using a Homogenization Method,” Comput. Methods Appl. Mech. Eng.,
71(2), pp. 197–224.

[CrossRef]
Maute,
K.
,
Tkachuk,
A.
,
Wu,
J.
,
Qi,
H. J.
,
Ding,
Z.
, and
Dunn,
M. L.
, 2015, “Level Set Topology Optimization of Printed Active Composites,” ASME J. Mech. Des.,
137(11), p. 111402.

[CrossRef]
van Dijk,
N. P.
,
Maute,
K.
,
Langelaar,
M.
, and
Van Keulen,
F.
, 2013, “Level-Set Methods for Structural Topology Optimization: A Review,” Struct. Multidiscip. Optim.,
48(3), pp. 437–472.

[CrossRef]
Yamada,
T.
,
Izui,
K.
,
Nishiwaki,
S.
, and
Takezawa,
A.
, 2010, “A Topology Optimization Method Based on the Level Set Method Incorporating a Fictitious Interface Energy,” Comput. Methods Appl. Mech. Eng.,
199(45–48), pp. 2876–2891.

[CrossRef]
Allaire,
G.
,
Jouve,
F.
, and
Toader,
A.-M.
, 2004, “Structural Optimization Using Sensitivity Analysis and a Level-Set Method,” J. Comput. Phys.,
194(1), pp. 363–393.

[CrossRef]
Wang,
M. Y.
,
Wang,
X.
, and
Guo,
D.
, 2003, “A Level Set Method for Structural Topology Optimization,” Comput. Methods Appl. Mech. Eng.,
192(1–2), pp. 227–246.

[CrossRef]
Blank,
L.
,
Garcke,
H.
,
Sarbu,
L.
,
Srisupattarawanit,
T.
,
Styles,
V.
, and
Voigt,
A.
, 2012, “Phase-Field Approaches to Structural Topology Optimization,” Constrained Optimization and Optimal Control for Partial Differential Equations,
Springer, Basel, Switzerland, pp. 245–256.

Dedè,
L.
,
Borden,
M. J.
, and
Hughes,
T. J.
, 2012, “Isogeometric Analysis for Topology Optimization With a Phase Field Model,” Arch. Comput. Methods Eng.,
19(3), pp. 427–465.

[CrossRef]
Takezawa,
A.
,
Nishiwaki,
S.
, and
Kitamura,
M.
, 2010, “Shape and Topology Optimization Based on the Phase Field Method and Sensitivity Analysis,” J. Comput. Phys.,
229(7), pp. 2697–2718.

[CrossRef]
Czarnecki,
S.
, and
Lewiński,
T.
, 2017, “On Material Design by the Optimal Choice of Young's Modulus Distribution,” Int. J. Solids Struct.,
110, pp. 315–331.

[CrossRef]
Ben-Tal,
A.
,
Kocvara,
M.
,
Nemirovski,
A.
, and
Zowe,
J.
, 1999, “Free Material Design via Semidefinite Programming: The Multiload Case With Contact Conditions,” SIAM J. Optim.,
9(4), pp. 813–832.

[CrossRef]
Zuo,
W.
, and
Saitou,
K.
, 2017, “Multi-Material Topology Optimization Using Ordered Simp Interpolation,” Struct. Multidiscip. Optim.,
55(2), pp. 477–491.

[CrossRef]
Sivapuram,
R.
,
Dunning,
P. D.
, and
Kim,
H. A.
, 2016, “Simultaneous Material and Structural Optimization by Multiscale Topology Optimization,” Struct. Multidiscip. Optim.,
54(5), pp. 1267–1281.

[CrossRef]
Tavakoli,
R.
, 2014, “Multimaterial Topology Optimization by Volume Constrained Allen–Cahn System and Regularized Projected Steepest Descent Method,” Comput. Methods Appl. Mech. Eng.,
276, pp. 534–565.

[CrossRef]
Guo,
X.
,
Zhang,
W.
, and
Zhong,
W.
, 2014, “Doing Topology Optimization Explicitly and Geometrically-A New Moving Morphable Components Based Framework,” ASME J. Appl. Mech.,
81(8), p. 081009.

[CrossRef]
Ramani,
A.
, 2011, “Multi-Material Topology Optimization With Strength Constraints,” Struct. Multidiscip. Optim.,
43(5), pp. 597–615.

[CrossRef]
Cramer,
A. D.
,
Challis,
V. J.
, and
Roberts,
A. P.
, 2016, “Microstructure Interpolation for Macroscopic Design,” Struct. Multidiscip. Optim.,
53(3), pp. 489–500.

[CrossRef]
Bendsoe,
M. P.
,
Guedes,
J.
,
Haber,
R. B.
,
Pedersen,
P.
, and
Taylor,
J.
, 1994, “An Analytical Model to Predict Optimal Material Properties in the Context of Optimal Structural Design,” ASME J. Appl. Mech.,
61(4), pp. 930–937.

[CrossRef]
Ringertz,
U.
, 1993, “On Finding the Optimal Distribution of Material Properties,” Struct. Optim.,
5(4), pp. 265–267.

[CrossRef]
Maar,
B.
, and
Schulz,
V.
, 2000, “Interior Point Multigrid Methods for Topology Optimization,” Struct. Multidiscip. Optim.,
19(3), pp. 214–224.

[CrossRef]
Kočvara,
M.
,
Zibulevsky,
M.
, and
Zowe,
J.
, 1998, “Mechanical Design Problems With Unilateral Contact,” ESAIM: Math. Modell. Numer. Anal.,
32(3), pp. 255–281.

[CrossRef]
Zowe,
J.
,
Kočvara,
M.
, and
Bendsøe,
M. P.
, 1997, “Free Material Optimization Via Mathematical Programming,” Math. Program.,
79(1–3), pp. 445–466.

Jarre,
F.
,
Kočvara,
M.
, and
Zowe,
J.
, 1996, Interior Point Methods for Mechanical Design Problems,
Universität Erlangen-Nürnberg. Institut für Angewandte Mathematik, Nuremberg, Germany.

Allaire,
G.
,
Jouve,
F.
, and
Maillot,
H.
, 2004, “Topology Optimization for Minimum Stress Design With the Homogenization Method,” Struct. Multidiscip. Optim.,
28(2–3), pp. 87–98.

Pereira,
J.
,
Fancello,
E.
, and
Barcellos,
C.
, 2004, “Topology Optimization of Continuum Structures With Material Failure Constraints,” Struct. Multidiscip. Optim.,
26(1–2), pp. 50–66.

[CrossRef]
Kočvara,
M.
, and
Stingl,
M.
, 2007, “Free Material Optimization for Stress Constraints,” Struct. Multidiscip. Optim.,
33(4–5), pp. 323–335.

[CrossRef]
Kočvara,
M.
, and
Stingl,
M.
, 2007, “On the Solution of Large-Scale Sdp Problems by the Modified Barrier Method Using Iterative Solvers,” Math. Program.,
109(2–3), pp. 413–444.

[CrossRef]
Stingl,
M.
, 2006, On the Solution of Nonlinear Semidefinite Programs by Augmented Lagrangian Methods,
Shaker Aachen, Nuremberg, Germany.

Deng,
S.
, and
Suresh,
K.
, 2017, “Stress Constrained Thermo-Elastic Topology Optimization With Varying Temperature Fields via Augmented Topological Sensitivity Based Level-Set,” Struct. Multidiscip. Optim.,
56(6), pp. 1413–1427.

[CrossRef]
Haslinger,
J.
,
Kočvara,
M.
,
Leugering,
G.
, and
Stingl,
M.
, 2010, “Multidisciplinary Free Material Optimization,” SIAM J. Appl. Math.,
70(7), pp. 2709–2728.

[CrossRef]
Picelli,
R.
,
Townsend,
S.
,
Brampton,
C.
,
Norato,
J.
, and
Kim,
H.
, 2018, “Stress-Based Shape and Topology Optimization With the Level Set Method,” Comput. Methods Appl. Mech. Eng.,
329, pp. 1–23.

[CrossRef]
Zhang,
S.
,
Gain,
A. L.
, and
Norato,
J. A.
, 2017, “Stress-Based Topology Optimization With Discrete Geometric Components,” Comput. Methods Appl. Mech. Eng.,
325, pp. 1–21.

[CrossRef]
Le,
C.
,
Norato,
J.
,
Bruns,
T.
,
Ha,
C.
, and
Tortorelli,
D.
, 2010, “Stress-Based Topology Optimization for Continua,” Struct. Multidiscip. Optim.,
41(4), pp. 605–620.

[CrossRef]
Czarnecki,
S.
, and
Wawruch,
P.
, 2015, “The Emergence of Auxetic Material as a Result of Optimal Isotropic Design,” Phys. Status Solidi (b),
252(7), pp. 1620–1630.

[CrossRef]
Czubacki,
R.
, and
Lewiński,
T.
, 2015, “Topology Optimization of Spatial Continuum Structures Made of Non-Homogeneous Material of Cubic Symmetry,” J. Mech. Mater. Struct.,
10(4), pp. 519–535.

[CrossRef]
Brańka,
A.
,
Heyes,
D.
, and
Wojciechowski,
K.
, 2009, “Auxeticity of Cubic Materials,” Phys. Status Solidi (b),
246(9), pp. 2063–2071.

[CrossRef]
Brańka,
A.
, and
Wojciechowski,
K.
, 2008, “Auxeticity of Cubic Materials: The Role of Repulsive Core Interaction,” J. Non-Cryst. Solids,
354(35–39), pp. 4143–4145.

[CrossRef]
Coelho,
P. G.
,
Cardoso,
J. B.
,
Fernandes,
P. R.
, and
Rodrigues,
H. C.
, 2011, “Parallel Computing Techniques Applied to the Simultaneous Design of Structure and Material,” Adv. Eng. Software,
42(5), pp. 219–227.

[CrossRef]
Liu,
L.
,
Yan,
J.
, and
Cheng,
G.
, 2008, “Optimum Structure With Homogeneous Optimum Truss-like Material,” Comput. Struct.,
86(13–14), pp. 1417–1425.

[CrossRef]
Cheng,
G.
,
Liu,
L.
, and
Yan,
J.
, 2006, “Optimum Structure With Homogeneous Optimum Truss-like Material,” III European Conference on Computational Mechanics, Lisbon, Portugal, June 5–8, pp. 481–481.

Gosselin,
C.
,
Duballet,
R.
,
Roux,
P.
,
Gaudillière,
N.
,
Dirrenberger,
J.
, and
Morel,
P.
, 2016, “Large-Scale 3D Printing of Ultra-High Performance Concrete—A New Processing Route for Architects and Builders,” Mater. Des.,
100, pp. 102–109.

[CrossRef]
Feng,
P.
,
Meng,
X.
,
Chen,
J.-F.
, and
Ye,
L.
, 2015, “Mechanical Properties of Structures 3D Printed With Cementitious Powders,” Constr. Build. Mater.,
93, pp. 486–497.

[CrossRef]
Radman,
A.
,
Huang,
X.
, and
Xie,
Y.
, 2013, “Topology Optimization of Functionally Graded Cellular Materials,” J. Mater. Sci.,
48(4), pp. 1503–1510.

[CrossRef]
Liu,
W.
, and
DuPont,
J.
, 2003, “Fabrication of Functionally Graded Tic/Ti Composites by Laser Engineered Net Shaping,” Scr. Mater.,
48(9), pp. 1337–1342.

[CrossRef]
Wang,
X.
,
Xu,
S.
,
Zhou,
S.
,
Xu,
W.
,
Leary,
M.
,
Choong,
P.
,
Qian,
M.
,
Brandt,
M.
, and
Xie,
Y. M.
, 2016, “Topological Design and Additive Manufacturing of Porous Metals for Bone Scaffolds and Orthopaedic Implants: A Review,” Biomaterials,
83, pp. 127–141.

[CrossRef] [PubMed]
Hollister,
S. J.
, 2005, “Porous Scaffold Design for Tissue Engineering,” Nat. Mater.,
4(7), p. 518.

[CrossRef] [PubMed]
Evgrafov,
A.
, 2005, “The Limits of Porous Materials in the Topology Optimization of Stokes Flows,” Appl. Math. Optim.,
52(3), pp. 263–277.

[CrossRef]
Yaji,
K.
,
Yamada,
T.
,
Kubo,
S.
,
Izui,
K.
, and
Nishiwaki,
S.
, 2015, “A Topology Optimization Method for a Coupled Thermal–Fluid Problem Using Level Set Boundary Expressions,” Int. J. Heat Mass Transfer,
81, pp. 878–888.

[CrossRef]
Garcke,
H.
,
Hecht,
C.
,
Hinze,
M.
, and
Kahle,
C.
, 2015, “Numerical Approximation of Phase Field Based Shape and Topology Optimization for Fluids,” SIAM J. Sci. Comput.,
37(4), pp. A1846–A1871.

[CrossRef]
Guest,
J. K.
, and
Prévost,
J. H.
, 2006, “Topology Optimization of Creeping Fluid Flows Using a Darcy–Stokes Finite Element,” Int. J. Numer. Methods Eng.,
66(3), pp. 461–484.

[CrossRef]
Borrvall,
T.
, and
Petersson,
J.
, 2003, “Topology Optimization of Fluids in Stokes Flow,” Int. J. Numer. Methods Fluids,
41(1), pp. 77–107.

[CrossRef]
Pizzolato,
A.
,
Sharma,
A.
,
Maute,
K.
,
Sciacovelli,
A.
, and
Verda,
V.
, 2017, “Topology Optimization for Heat Transfer Enhancement in Latent Heat Thermal Energy Storage,” Int. J. Heat Mass Transfer,
113, pp. 875–888.

[CrossRef]
Jing,
G.
,
Isakari,
H.
,
Matsumoto,
T.
,
Yamada,
T.
, and
Takahashi,
T.
, 2015, “Level Set-Based Topology Optimization for 2D Heat Conduction Problems Using Bem With Objective Function Defined on Design-Dependent Boundary With Heat Transfer Boundary Condition,” Eng. Anal. Boundary Elem.,
61, pp. 61–70.

[CrossRef]
Gersborg-Hansen,
A.
,
Bendsøe,
M. P.
, and
Sigmund,
O.
, 2006, “Topology Optimization of Heat Conduction Problems Using the Finite Volume Method,” Struct. Multidiscip. Optim.,
31(4), pp. 251–259.

[CrossRef]
Deng,
S.
, and
Suresh,
K.
, 2017, “Topology Optimization Under Thermo-Elastic Buckling,” Struct. Multidiscip. Optim.,
55(5), pp. 1759–1772.

[CrossRef]
Deng,
S.
, and
Suresh,
K.
, 2016, “Multi-Constrained 3D Topology Optimization Via Augmented Topological Level-Set,” Comput. Struct.,
170, pp. 1–12.

[CrossRef]
Deng,
S.
, and
Suresh,
K.
, 2015, “Multi-Constrained Topology Optimization Via the Topological Sensitivity,” Struct. Multidiscip. Optim.,
51(5), pp. 987–1001.

[CrossRef]
Sokół,
T.
, and
Rozvany,
G.
, 2013, “On the Adaptive Ground Structure Approach for Multi-Load Truss Topology Optimization,” Tenth World Congress on Structural and Multidisciplinary Optimization, Orlando, FL, May 20–24, pp. 19–24.

Alvarez,
F.
, and
Carrasco,
M.
, 2005, “Minimization of the Expected Compliance as an Alternative Approach to Multiload Truss Optimization,” Struct. Multidiscip. Optim.,
29(6), pp. 470–476.

[CrossRef]
Guedes,
J. M.
,
Rodrigues,
H. C.
, and
Bendsøe,
M. P.
, 2003, “A Material Optimization Model to Approximate Energy Bounds for Cellular Materials Under Multiload Conditions,” Struct. Multidiscip. Optim.,
25(5–6), pp. 446–452.

[CrossRef]
Oberai,
A. A.
,
Gokhale,
N. H.
,
Doyley,
M. M.
, and
Bamber,
J. C.
, 2004, “Evaluation of the Adjoint Equation Based Algorithm for Elasticity Imaging,” Phys. Med. Biol.,
49(13), p. 2955.

[CrossRef] [PubMed]
Tikhonov,
A. N.
, and
Glasko,
V. B.
, 1965, “Use of the Regularization Method in Non-Linear Problems,” USSR Comput. Math. Math. Phys.,
5(3), pp. 93–107.

[CrossRef]
Vauhkonen,
M.
,
Vadasz,
D.
,
Karjalainen,
P. A.
,
Somersalo,
E.
, and
Kaipio,
J. P.
, 1998, “Tikhonov Regularization and Prior Information in Electrical Impedance Tomography,” IEEE Trans. Med. Imaging,
17(2), pp. 285–293.

[CrossRef] [PubMed]
Mueller,
J. L.
, and
Siltanen,
S.
, 2012, Linear and Nonlinear Inverse Problems With Practical Applications,
Society of Indian Automobile Manufactures, Auckland, NZ.

Kaipio,
J.
, and
Somersalo,
E.
, 2006, Statistical and Computational Inverse Problems, Vol.
160,
Springer Science & Business Media, New York.

Surana,
K. S.
, and
Reddy,
J.
, 2016, The Finite Element Method for Boundary Value Problems: Mathematics and Computations,
CRC Press, Boca Raton, FL.

Kim,
S.-J.
,
Koh,
K.
,
Lustig,
M.
,
Boyd,
S.
, and
Gorinevsky,
D.
, 2007, “An Interior-Point Method for Large-Scale l1-Regularized Least Squares,” IEEE J. Sel. Topics Signal Process.,
1(4), pp. 606–617.

[CrossRef]
Vauhkonen,
M.
, 1997, “Electrical Impedance Tomography and Prior Information,” PhD Thesis, University of Kuopio, Kuopio, Finland.

An,
H.-B.
,
Wen,
J.
, and
Feng,
T.
, 2011, “On Finite Difference Approximation of a Matrix-Vector Product in the Jacobian-Free Newton-Krylov Method,” J. Comput. Appl. Math.,
236(6), pp. 1399–1409.

[CrossRef]
Smyl,
D.
,
Bossuyt,
S.
, and
Liu,
D.
, Submitted, 2018, “Stacked Elasticity Imaging Approach for Visualizing Defects in the Presence of Background Inhomogeneity,” J. Eng. Mech., (accepted).

Liu,
D.
,
Kolehmainen,
V.
,
Siltanen,
S.
,
Laukkanen,
A.
, and
Seppänen,
A.
, 2015, “Estimation of Conductivity Changes in a Region of Interest With Electrical Impedance Tomography,” Inverse Probl. Imaging,
9(1), pp. 211–229.

[CrossRef]