Asada,
H.
, and
Granito,
J.
, 1985, “
Kinematic and Static Characterization of Wrist Joints and Their Optimal Design,” IEEE International Conference on Robotics Automation (ICRA), St. Louis, MO, Mar. 25–28, pp. 244–250.

Gosselin,
C.
, and
Hamel,
J.
, 1994, “
The Agile Eye: A High-Performance Three-Degree-of-Freedom Camera-Orienting Device,” IEEE International Conference Robotics Automation (ICRA), San Diego, CA, May 8–13, pp. 781–786.

Li,
T.
, and
Payandeh,
S.
, 2002, “
Design of Spherical Parallel Mechanisms for Application to Laparoscopic Surgery,” Robotica,
20(2), pp. 133–138.

[CrossRef]
Bonev,
I.
, and
Gosselin,
C.
, 2006, “
Analytical Determination of the Workspace of Symmetrical Spherical Parallel Mechanisms,” IEEE Trans. Rob.,
22(5), pp. 1011–1017.

[CrossRef]
Bidault,
F.
,
Teng,
C.-P.
, and
Angeles,
J.
, 2001, “
Structural Optimization of a Spherical Parallel Manipulator Using a Two-Level Approach,” ASME Paper No. DETC2001/DAC-21030.

Bai,
S.
, 2010, “
Optimum Design of Spherical Parallel Manipulator for a Prescribed Workspace,” Mech. Mach. Theory,
45(2), pp. 200–211.

[CrossRef]
Wu,
G.
,
Caro,
S.
,
Bai,
S.
, and
Kepler,
J.
, 2014, “
Dynamic Modeling and Design Optimization of a 3-DOF Spherical Parallel Manipulator,” Rob. Autom. Syst.,
62(10), pp. 1377–1386.

[CrossRef]
Karouia,
M.
, and
Hervé,
J.
, 2000, “
A Three-Dof Tripod for Generating Spherical Rotation,” Advances in Robot Kinematics,
J. Lenarčič
and
M. Stanišič
, eds.,
Springer,
Netherlands, pp. 395–402.

[CrossRef]
Kong,
K.
, and
Gosselin,
C.
, 2004, “
Type Synthesis of Three-Degree-of-Freedom Spherical Parallel Manipulators,” Int. J. Rob. Res.,
23(3), pp. 237–245.

[CrossRef]
Urízar,
M.
,
Petuya,
V.
,
Altuzarra,
O.
,
Diez,
M.
, and
Hernández,
A.
, 2015, “
Non-Singular Transitions Based Design Methodology for Parallel Manipulators,” Mech. Mach. Theory,
91, pp. 168–186.

[CrossRef]
Wu,
G.
,
Caro,
S.
, and
Wang,
J.
, 2015, “
Design and Transmission Analysis of an Asymmetrical Spherical Parallel Manipulator,” Mech. Mach. Theory,
94, pp. 119–131.

[CrossRef]
Wu,
G.
, and
Zou,
P.
, 2016, “
Comparison of 3-dof Asymmetrical Spherical Parallel Manipulators With Respect to Motion/Force Transmission and Stiffness,” Mech. Mach. Theory,
105, pp. 369–387.

[CrossRef]
Landuré,
J.
, and
Gosselin,
C.
, 2018, “
Kinematic Analysis of a Novel Kinematically Redundant Spherical Parallel Manipulator,” ASME J. Mech. Rob.,
10(2), p. 021007.

[CrossRef]
Rosenberg,
R. M.
, 1958, “
On the Dynamical Behavior of Rotating Shafts Driven by Universal (Hooke) Couplings,” ASME J. Appl. Mech.,
25(1), pp. 47–51.

Porter,
B.
, 1961, “
A Theoretical Analysis of the Torsional Oscillation of a System Incorporating a Hooke's Joint,” Arch. J. Mech. Eng. Sci.,
3(4), pp. 324–329.

[CrossRef]
Floquet,
G.
, 1883, “
Sur Les Équations Différentielles Linéaires à Coefficients Périodiques,” Ann. De L'École Normale Supérieure,
12, pp. 47–88.

[CrossRef]
Kuchment,
P. A.
, 1993, Floquet Theory for Partial Differential Equations,
Birkhauser Verlag, Basel, Switzerland.

[CrossRef]
Éidinov,
M. S.
,
Nyrko,
V. A.
,
Éidinov,
R. M.
, and
Gashukov,
V. S.
, 1976, “
Torsional Vibrations of a System With Hooke's Joint,” Sov. Appl. Mech,
12(3), pp. 291–298.

[CrossRef]
Asokanthan,
S. F.
, and
Hwang,
M. C.
, 1996, “
Torsional Instabilities in a System Incorporating a Hooke's Joint,” ASME J. Vib. Acoust.,
118(3), pp. 83–91.

[CrossRef]
Chang,
S. I.
, 2000, “
Torsional Instabilities and Non-Linear Oscillation of a System Incorporating a Hooke's Joint,” J. Sound Vib.,
229(4), pp. 993–1002.

[CrossRef]
Bulut,
G.
, and
Parlar,
Z.
, 2011, “
Dynamic Stability of a Shaft System Connected Through a Hooke's Joint,” Mech. Mach. Theory,
46(11), pp. 1689–1695.

[CrossRef]
Bulut,
G.
, 2014, “
Dynamic Stability Analysis of Torsional Vibrations of a Shaft System Connected by a Hooke's Joint Through a Continuous System Model,” J. Sound Vib.,
333(16), pp. 3691–3701.

[CrossRef]
Ota,
H.
,
Kato,
M.
, and
Sugita,
H.
, 1984, “
Lateral Vibrations of a Rotating Shaft Driven by a Universal Joint–1st Report,” Bull. JSME,
27(231), pp. 2002–2007.

[CrossRef]
Ota,
H.
,
Kato,
M.
, and
Sugita,
H.
, 1985, “
Lateral Vibrations of a Rotating Shaft Driven by a Universal Joint–2nd Report,” Bull. JSME,
28(242), pp. 1749–1755.

[CrossRef]
Kato,
M.
, and
Ota,
H.
, 1990, “
Lateral Excitation of a Rotating Shaft Driven by a Universal Joint With Friction,” ASME J. Vib. Acoust.,
112(3), pp. 298–303.

[CrossRef]
Sheu,
P. P.
,
Chieng,
W. H.
, and
Lee,
A. C.
, 1996, “
Modeling and Analysis of the Intermediate Shaft Between Two Universal Joints,” ASME J. Vib. Acoust.,
118(1), pp. 88–99.

[CrossRef]
Saigo,
M.
,
Okada,
Y.
, and
Ono,
K.
, 1997, “
Self-Excited Vibration Caused by Internal Friction in Universal Joints and Its Stabilizing Method,” ASME J. Vib. Acoust.,
119(2), pp. 221–229.

[CrossRef]
Mazzei
,
A. J., Jr.
,
Argento,
A.
, and
Scott,
R. A.
, 1999, “
Dynamic Stability of a Rotating Shaft Driven Through a Universal Joint,” J. Sound Vib.,
222(1), pp. 19–47.

[CrossRef]
Mazzei,
A. J.
, and
Scott,
R. A.
, 2001, “
Principal Parametric Resonance Zones of a Rotating Rigid Shaft Driven Through a Universal Joint,” J. Sound Vib.,
244(3), pp. 555–562.

[CrossRef]
Kang,
Y.
,
Shen,
Y.
,
Zhang,
W.
, and
Yang,
J.
, 2014, “
Stability Region of Floating Intermediate Support in a Shaft System With Multiple Universal Joints,” J. Mech. Sci. Technol.,
28(7), pp. 2733–2742.

[CrossRef]
Soltan Rezaee,
M.
,
Ghazavi,
M.-R.
, and
Najafi,
A.
, 2017, “
Mathematical Modelling for Vibration Evaluation of Powertrain Systems,” Modelling, Simulation and Identification/854: Intelligent Systems and Control, Calgary, AB, Canada, July 19–20, pp. 19–20.

Desmidt,
H. A.
,
Smith,
E. C.
, and
Wang,
K. W.
, 2002, “
Coupled Torsion-Lateral Stability of a Shaft-Disk System Driven Through a Universal Joint,” ASME J. Appl. Mech.,
69(3), pp. 261–273.

[CrossRef]
Pierrot,
F.
,
Company,
O.
,
Krut,
S.
, and
Nabat,
V.
, 2006, “
Four-Dof PKM with Articulated Travelling-Plate,” Parallel Kinematics Seminar (PKS'06), Chemnitz, Germany, Apr. 25–26, pp. 25–26.

Porter,
B.
, and
Gregory,
R. W.
, 1963, “
Non-Linear Torsional Oscillation of a System Incorporating a Hooke's Joint,” Arch. J. Mech. Eng. Sci.,
5(2), pp. 191–209.

[CrossRef]
Wu,
G.
, and
Zou,
P.
, 2017, “
Stiffness Analysis and Comparison of a Biglide Parallel Grinder With Alternative Spatial Modular Parallelograms,” Robotica,
35(6), pp. 1310–1326.

[CrossRef]
Gosselin,
C.
, 1990, “
Stiffness Mapping for Parallel Manipulators,” IEEE Trans. Rob. Autom.,
6(3), pp. 377–382.

[CrossRef]
Shigley,
J.
,
Mischke,
C.
, and
Brown,
T.
, 2004, Standard Handbook of Machine Design,
McGraw-Hill, New York.

Nikravesh,
P.
, 1988, Computer-Aided Analysis of Mechanical Systems,
Prentice Hall,
Englewood Cliffs, NJ.

Jalón,
J. G. D.
, and
Bayo,
E.
, 1994, Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge,
Springer,
New York.

[CrossRef]
Abramowitz,
M.
,
Stegun,
I. A.
, and
Romain,
J. E.
, 1972, Handbook of Mathematical Functions, With Formulas, Graphs, and Mathematical Tables,
Dover Publications, Mineola, NY.

Teschl,
G.
, 2012, Ordinary Differential Equations and Dynamical Systems,
American Mathematical Society,
Providence, RI.

[CrossRef]
Chicone,
C.
, 2006, Ordinary Differential Equations With Applications,
Springer,
New York.

Szymkiewicz,
R.
, 1971, Numerical Solution of Ordinary Differential Equations,
Academic Press, Cambridge, MA.