0
Design Innovation Paper

Kinematic Synthesis of a D-Drive MEMS Device With Rigid-Body Replacement Method

[+] Author and Article Information
Paolo Sanò

Department of Mechanical and Aerospace Engineering,
Sapienza University of Rome,
Rome 00184, Italy
e-mail: sano.784531@studenti.uniroma1.it

Matteo Verotti

Department of Industrial Engineering,
University of Trento,
Povo 38123, Italy;
ProM Facility,
Trentino Sviluppo S.p.A.,
Rovereto 38068, Italy
e-mail: matteo.verotti@unitn.it

Paolo Bosetti

Department of Industrial Engineering,
University of Trento,
Povo 38123, Italy;
ProM Facility,
Trentino Sviluppo S.p.A.,
Rovereto 38068, Italy
e-mail: paolo.bosetti@unitn.it

Nicola P. Belfiore

Department of Engineering,
Universitá degli Studi Roma Tre,
Rome 00146, Italy
e-mail: nicolapio.belfiore@uniroma3.it

1Corresponding author.

Contributed by the Design Innovation and Devices of ASME for publication in the JOURNAL OF MECHANICAL DESIGN. Manuscript received September 5, 2017; final manuscript received March 24, 2018; published online April 25, 2018. Assoc. Editor: David Myszka.

J. Mech. Des 140(7), 075001 (Apr 25, 2018) (10 pages) Paper No: MD-17-1606; doi: 10.1115/1.4039853 History: Received September 05, 2017; Revised March 24, 2018

In this paper, a microsystem with prescribed functional capabilities is designed and simulated. In particular, the development of a straight line path generator micro electro mechanical system (MEMS) device is presented. A new procedure is suggested for avoiding branch or circuit problems in the kinematic synthesis problem. Then, Ball's point detection is used to validate the obtained pseudo-rigid body model (PRBM). A compliant MEMS device is obtained from the PRBM through the rigid-body replacement method by making use of conjugate surfaces flexure hinges (CSFHs). Finally, the functional capability of the device is investigated by means of finite element analysis (FEA) simulations and experimental testing at the macroscale.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Verotti, M. , Dochshanov, A. , and Belfiore, N. P. , 2017, “ A Comprehensive Survey on Microgrippers Design: Mechanical Structure,” ASME J. Mech. Des., 139(6), p. 060801. [CrossRef]
Dochshanov, A. , Verotti, M. , and Belfiore, N. P. , 2017, “ A Comprehensive Survey on Microgrippers Design: Operational Strategy,” ASME J. Mech. Des., 139(7), p. 070801. [CrossRef]
Verotti, M. , Crescenzi, R. , Balucani, M. , and Belfiore, N. , 2015, “ MEMS-Based Conjugate Surfaces Flexure Hinge,” ASME J. Mech. Des., 137(1), p. 012301. [CrossRef]
Arthur, G. , and Erdman, E. , 1993, Modern Kinematics: Developments in the Last Forty Years (Wiley Series in Design Engineering), Wiley, New York.
Kempe, A. B. , 1875, “ On a General Method of Describing Plane Curves of the Nth Degree by Linkwork,” Proc. London Math. Soc., s1–7(1), pp. 213–216. [CrossRef]
Burmester, L. , 1888, Lehrbuch Der Kinematik, Leipzig, Germany.
Krause, M. , 1910, “ Zur Theorie der ebenen ähnlich veränderlichen Systeme,” Jahresber. d. Deutschen Mathematiker-Vereinigung 19, pp. 327–329.
Grubler, M. , 1917, Getriebelehre, Eine Theorie Des Zwanglaufes Und Der Ebenen Mechanismen, Springer-Verlag, Berlin.
Alt, H. , 1921, “ Zur Synthese Der Ebenen Mechanismen,” ZAMM-J. Appl. Math. Mech./Z. Für Angew. Math. Mech., 1(5), pp. 373–398. [CrossRef]
Denavit, J. , and Hartenberg, R. S. , 1960, “ Approximate Synthesis of Spatial Linkages,” ASME J. Appl. Mech., 27(1), pp. 201–206. [CrossRef]
Roth, B. , and Freudenstein, F. , 1963, “ Synthesis of Path-Generating Mechanisms by Numerical Methods,” ASME J. Eng. Ind., 85(3), pp. 298–304. [CrossRef]
McLarnan, C. W. , 1968, “ On Linkage Synthesis With Minimum Error,” J. Mech., 3(2), pp. 101–105. [CrossRef]
Fox, R. L. , and Gupta, K. C. , 1973, “ Optimization Technology as Applied to Mechanism Design,” ASME J. Eng. Ind., 95(2), pp. 657–663. [CrossRef]
Root, R. R. , and Ragsdell, K. M. , 1976, “ A Survey of Optimization Methods Applied to the Design of Mechanisms,” ASME J. Eng. Ind., 98(3), pp. 1036–1041. [CrossRef]
Erdman, A. G. , 1985, “ Computer-Aided Design of Mechanisms: 1984 and Beyond,” Mech. Mach. Theory, 20(4), pp. 245–249. [CrossRef]
Mariappan, J. , and Krishnamurty, S. , 1996, “ A Generalized Exact Gradient Method for Mechanism Synthesis,” Mech. Mach. Theory, 31(4), pp. 413–421. [CrossRef]
Vallejo, J. , Avil, R. , Hernández, A. , and Amezua, E. , 1995, “ Nonlinear Optimization of Planar Linkages for Kinematic Syntheses,” Mech. Mach. Theory, 30(4), pp. 501–518. [CrossRef]
Deshpande, S. , and Purwar, A. , 2017, “ A Task-Driven Approach to Optimal Synthesis of Planar Four-Bar Linkages for Extended Burmester Problem,” ASME J. Mech. Rob., 9(6), p. 061005. [CrossRef]
Venkataraman, S. C. , Kinzel, G. L. , and Waldron, K. J. , 1992, “ Optimal Synthesis of Four-Bar Linkages for Four-Position Rigid-Body Guidance With Selective Tolerance Specifications,” 22nd Biennial Mechanisms Conference, Scottsdale, AZ, Sept. 13–16, pp. 651–659.
Suh, C. H. , and Radcliffe, C. W. , 1967, “ Synthesis of Plane Linkages With Use of the Displacement Matrix,” ASME J. Eng. Ind., 89(2), pp. 206–214. [CrossRef]
Chase, T. R. , and Mirth, J. A. , 1993, “ Circuits and Branches of Single-Degree-of-Freedom Planar Linkages,” ASME J. Mech. Des., 115(2), pp. 223–230. [CrossRef]
Filemon, E. , 1972, “ Useful Ranges of Centerpoint Curves for Design of Crank-and-Rocker Linkages,” Mech. Mach. Theory, 7(1), pp. 47–53. [CrossRef]
Kohli, D. , Cheng, J.-C. , and Tsai, K. , 1994, “ Assemblability, Circuits, Branches, Locking Positions, and Rotatability of Input Links of Mechanisms With Four Closures,” ASME J. Mech. Des., 116(1), pp. 92–98. [CrossRef]
Bawab, S. , Kinzel, G. L. , and Waldron, K. J. , 1992, “ Rectified Synthesis of Coupler-Driven Four-Bar Mechanisms for Four-Position Motion Generation,” Am. Soc. Mech. Eng., Des. Eng. Div., 46, pp. 147–155.
Cheng, J.-C. , and Kohli, D. , 1992, “ Synthesis of Mechanics Including Circuit Defects, Branch Defects and Input-Crank Rotatability,” 22nd Biennial Mechanisms Conference, Scottsdale, AZ, Sept. 13–16, pp. 111–119.
Mirth, J. A. , 1994, “ General Order Criteria for the Precision Position Synthesis of Single Degree-of-Freedom Planar Linkages,” ASME Design Technical Conference, Mechanism Synthesis and Analysis, DE-Vol. 70, pp. 245–252.
Ting, K.-L. , and Dou, X. , 1994, “ Branch, Mobility Criteria, and Classification of RSSR and Other Bimodal Linkages,” ASME Design Technical Conference, Mechanism Synthesis and Analysis, DE-Vol. 7, pp. 303–310.
Holte, J. E. , and Chase, T. R. , 1995, “ Branching and Immovable Configurations,” ASME Design Engineering Technical Conference, Boston, MA, Sept. 17–20, pp. 861–866.
Beloiu, A. , and Gupta, K. , 1997, “ A Unified Approach for the Investigation of Branch and Circuit Defects,” Mech. Mach. Theory, 32(5), pp. 539–557. [CrossRef]
Gupta, K. , and Beloiu, A. , 1998, “ Branch and Circuit Defect Elimination in Spherical Four-Bar Linkages,” Mech. Mach. Theory, 33(5), pp. 491–504. [CrossRef]
Hwang, W.-M. , and Chen, Y.-J. , 2008, “ Defect-Free Synthesis of Stephenson-Iii Motion Generators,” Proc. Inst. Mech. Eng., Part C, 222(12), pp. 2485–2494. [CrossRef]
Perkins, D. A. , and Murray, A. P. , 2011, “ Synthesis of Coupler-Drivers for Four Position Planar Synthesis Tasks,” ASME Paper No. DETC2011-48170.
Sardashti, A. , Daniali, H. , and Varedi, S. , 2013, “ Optimal Free-Defect Synthesis of Four-Bar Linkage With Joint Clearance Using PSO Algorithm,” Meccanica, 48(7), pp. 1681–1693. [CrossRef]
Shen, Q. , Lee, W.-T. , and Russell, K. , 2015, “ On Adjustable Planar Four-Bar Motion Generation With Order, Branch and Circuit Defect Rectification,” ASME J. Mech. Rob., 7(3), p. 034501.
Verotti, M. , Dochshanov, A. , and Belfiore, N. P. , 2017, “ Compliance Synthesis of CSFH MEMS-Based Microgrippers,” ASME J. Mech. Des., 139(2), p. 022301. [CrossRef]
Bagolini, A. , Ronchin, S. , Bellutti, P. , Chist, M. , Verotti, M. , and Belfiore, N. P. , 2017, “ Fabrication of Novel Mems Microgrippers by Deep Reactive Ion Etching With Metal Hard Mask,” J. Microelectromech. Syst., 26(4), pp. 926–934. [CrossRef]
Belfiore, N. , Broggiato, G. , Verotti, M. , Balucani, M. , Crescenzi, R. , Bagolini, A. , Bellutti, P. , and Boscardin, M. , 2015, “ Simulation and Construction of a MEMS CSFH Based Microgripper,” Int. J. Mech. Control, 16(1), pp. 21–30. https://www.researchgate.net/publication/283532930_Simulation_and_construction_of_a_MEMS_CSFH_based_microgripper
Cecchi, R. , Verotti, M. , Capata, R. , Dochshanov, A. , Broggiato, G. , Crescenzi, R. , Balucani, M. , Natali, S. , Razzano, G. , Lucchese, F. , Bagolini, A. , Bellutti, P. , Sciubba, E. , and Belfiore, N. , 2015, “ Development of Micro-Grippers for Tissue and Cell Manipulation With Direct Morphological Comparison,” Micromachines, 6(11), pp. 1710–1728. [CrossRef]
Di Giamberardino, P. , Bagolini, A. , Bellutti, P. , Rudas, I. J. , Verotti, M. , Botta, F. , and Belfiore, N. P. , 2017, “ New MEMS Tweezers for the Viscoelastic Characterization of Soft Materials at the Microscale,” Micromachines, 9(1), p. 15. [CrossRef]
Pennestrì, E. , and Belfiore, N. P. , 1995, “ On the Numerical Computation of Generalized Burmester Points,” Meccanica, 30(2), pp. 147–153. [CrossRef]
Pennestrì, E. , and Belfiore, N. P. , 1994, “ Modular Third-Order Analysis of Planar Linkages With Applications,” American Society of Mechanical Engineers, Design Engineering Division (Publication) DE, 70(Pt 1), pp. 99–103.
Press, W. H. , Teukolsky, S. A. , Vetterling, W. T. , and Flannery, B. P. , 1996, Numerical Recipes in C, Vol. 2, Cambridge University Press, Cambridge, UK.
Hartenberg, R. S. , and Denavit, J. , 1964, Kinematic Synthesis of Linkages, McGraw-Hill, New York.
Howell, L. L. , Magleby, S. P. , and Olsen, B. M. , 2013, Handbook of Compliant Mechanisms, Wiley, Chichester, UK. [CrossRef]
Verotti, M. , 2016, “ Analysis of the Center of Rotation in Primitive Flexures: Uniform Cantilever Beams With Constant Curvature,” Mech. Mach. Theory, 97, pp. 29–50. [CrossRef]
Verotti, M. , 2018, “ Effect of Initial Curvature in Uniform Flexures on Position Accuracy,” Mech. Mach. Theory, 119, pp. 106–118. [CrossRef]
Hopcroft, M. A. , Nix, W. D. , and Kenny, T. W. , 2010, “ What is the Young's Modulus of Silicon?,” J. Microelectromech. Syst., 19(2), pp. 229–238. [CrossRef]
Yeh, J. A. , Chen, C.-N. , and Lui, Y.-S. , 2004, “ Large Rotation Actuated by In-Plane Rotary Comb-Drives With Serpentine Spring Suspension,” J. Micromech. Microeng., 15(1), p. 201. [CrossRef]
Ghosh, A. , and Corves, B. , 2016, Introduction to Micromechanisms and Microactuators, Springer, New Delhi, India.
Petersen, K. E. , 1982, “ Silicon as a Mechanical Material,” Proc. IEEE, 70(5), pp. 420–457. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Nomenclature for the generic four-bar linkage

Grahic Jump Location
Fig. 2

Design parameters: target path (y = 10) and frame constraint region (square of side 20 and center in (10, 5))

Grahic Jump Location
Fig. 3

Flowchart LM algorithm, where λ=10−3, δ=10−6, and εmax=0.5

Grahic Jump Location
Fig. 4

Four-bar linkage resulting from the optimization process, coupler point curve (solid line) and target path (dotted line)

Grahic Jump Location
Fig. 5

Configuration, inflection circle (thin line), cubic of stationary curvature (thick line), and Ball's point B in the tenth pose

Grahic Jump Location
Fig. 6

Ball's points locus for the 20 adjacent configurations corresponding to the 20 precision points

Grahic Jump Location
Fig. 7

Rigid-body replacement: PRBM (black) and MEMS device (gray)

Grahic Jump Location
Fig. 8

Comb-drive geometric parameters

Grahic Jump Location
Fig. 9

Detail of the refined mesh in flexure and fingers of the comb drive

Grahic Jump Location
Fig. 10

Total deformation corresponding to the applied voltage of 150 V and undeformed wireframe

Grahic Jump Location
Fig. 11

Force magnitudes exerted by each comb drive and maximum values of the MPS

Grahic Jump Location
Fig. 12

Path followed by the MEMS device tip

Grahic Jump Location
Fig. 13

FEA simulation setup, mesh detail, and deformed configuration corresponding to F = 16 N

Grahic Jump Location
Fig. 14

von Mises equivalent stress distribution on the flexures for F = 16 N

Grahic Jump Location
Fig. 15

Polymethyl methacrylate sample

Grahic Jump Location
Fig. 16

Tracking of the compliant mechanism tip: reference frame, calibration distance (10 mm), marker enclosed in the search region (dotted square), tracked points (circles), and acquired path on the x - y plane (on the right)

Grahic Jump Location
Fig. 17

Tip path resulting from FEA and experimental test (range 0–40 mm)

Grahic Jump Location
Fig. 18

Tip path resulting from FEA and experimental test (range 0–30 mm)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In