Design Innovation Paper

Shape and Form Optimization of Online Pressure Compensating Drip Emitters to Achieve Lower Activation Pressure

[+] Author and Article Information
Pulkit Shamshery

Graduate Student, Global Engineering and Research Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA

Amos G. Winter, V

Associate Professor of Mechanical Engineering, Global Engineering and Research Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA

1Corresponding author.

ASME doi:10.1115/1.4038211 History: Received June 05, 2017; Revised October 03, 2017


This study presents the design and validation of on-line pressure-compensating (PC) drip irrigation emitters with a substantially lower minimum compensating inlet pressure (MCIP) than commercially available products. A reduced MCIP, or activation pressure, results in a drip irrigation system that can operate at a reduced pumping pressure, has lower power and energy requirements, requires a lower initial capital cost, and facilitates solar-powered irrigation systems. The technology presented herein can help spread drip irrigation to remote regions and contribute to reducing poverty, particularly in developing countries. The activation pressures of drip emitters at three flow rates were minimized using a genetic algorithm-based optimization method coupled with a recently published fluid-structure interaction analytical model of on-line PC drip emitter performance. The optimization took into account manufacturing constraints and the need to economically retrofit existing machines to manufacture new emitters. Optimized PC drip emitter designs with flow rates of 3.3, 4.2, and 8.2 lph were validated using precision machined prototype emitters. The activation pressure for all was = 0.2 bar, which is as low as 16.7% that of commercial products. A limited production run of injection molded 8.2 lph dripper prototypes demonstrated they could be made with conventional manufacturing techniques. These drippers had an activation pressure of 0.15 bar. A cost analysis showed that low MCIP drip emitters can reduce the cost of solar-powered drip irrigation systems by up to 40%.

Copyright (c) 2017 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In