Bendsøe,
M. P.
, 1995, Optimization of Structural Topology, Shape and Material,
Springer,
New York.

[CrossRef]
Allaire,
G.
, 2001, Shape Optimization by the Homogenization Method,
Springer,
New York.

Sigmund,
O.
, and
Torquato,
S.
, 1997, “
Design of Materials With Extreme Thermal Expansion Using a Three-Phase Topology Optimization Method,” J. Mech. Phys. Solids,
45(6), pp. 1037–1067.

[CrossRef]
Sigmund,
O.
, and
Torquato,
S.
, 1999, “
Design of Smart Composite Materials Using Topology Optimization,” Smart Mater. Struct.,
8(3), pp. 365–379.

[CrossRef]
Gibiansky,
L. V.
, and
Sigmund,
O.
, 2000, “
Multiphase Composites With Extremal Bulk Modulus,” J. Mech. Phys. Solids,
48(3), pp. 461–498.

[CrossRef]
Bendsøe,
M. P.
, 1989, “
Optimal Shape Design as a Material Distribution Problem,” Struct. Multidiscip. Optim.,
1(4), pp. 193–202.

[CrossRef]
Mlejnek,
H.
, 1992, “
Some Aspects of the Genesis of Structures,” Struct. Optim.,
5(1–2), pp. 64–69.

[CrossRef]
Zhou,
M.
, and
Rozvany,
G.
, 1991, “
The COC Algorithm—Part II: Topological, Geometrical and Generalized Shape Optimization,” Comput. Methods Appl. Mech. Eng.,
89(1–3), pp. 309–336.

[CrossRef]
Bendsøe,
M. P.
, and
Sigmund,
O.
, 1999, “
Material Interpolations in Topology Optimization,” Arch. Appl. Mech.,
69, pp. 635–654.

[CrossRef]
Gao,
T.
, and
Zhang,
W.
, 2011, “
A Mass Constraint Formulation for Structural Topology Optimization With Multiphase Materials,” Int. J. Numer. Methods Eng.,
88(8), pp. 774–796.

[CrossRef]
Cui,
M. T.
, and
Chen,
H. F.
, 2014, “
An Improved Alternating Active-Phase Algorithm for Multi-Material Topology Optimization Problems,” Appl. Mech. Mater.,
635–637, pp. 105–111.

[CrossRef]
Osher,
S.
, and
Santosa,
F.
, 2001, “
Level Set Methods for Optimization Problem Involving Geometry and Constraints—I: Frequencies of a Two-Density Inhomogeneous Drum,” J. Comput. Phys.,
171(1), pp. 272–288.

[CrossRef]
Wang,
M. Y.
,
Wang,
X.
, and
Guo,
D.
, 2003, “
A Level Set Method for Structural Topology Optimization,” Comput. Methods Appl. Mech. Eng.,
192(1–2), pp. 227–246.

[CrossRef]
Allaire,
G.
,
Jouve,
F.
, and
Toader,
A.-M.
, 2004, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method,” J. Comput. Phys.,
194(1), pp. 363–393.

[CrossRef]
Allaire,
G.
, and
Castro,
C.
, 2002, “
Optimization of Nuclear Fuel Reloading by the Homogenization Method,” Struct. Multidiscip. Optim.,
24(1), pp. 11–22.

[CrossRef]
Mei,
Y.
, and
Wang,
X.
, 2004, “
A Level Set Method for Structural Topology Optimization and Its Applications,” Adv. Eng. Software,
35(7), pp. 415–441.

[CrossRef]
Wang,
M. Y.
, and
Wang,
X.
, 2004, ““
Color” Level Sets: A Multi-Phase Method for Structural Topology Optimization With Multiple Materials,” Comput. Methods Appl. Mech. Eng.,
193(6–8), pp. 469–496.

[CrossRef]
Wang,
M. Y.
, and
Wang,
X.
, 2005, “
A Level-Set Based Variational Method for Design and Optimization of Heterogeneous Objects,” CAD Comput. Aided Des.,
37(3), pp. 321–337.

[CrossRef]
Dombre,
E.
,
Allaire,
G.
,
Pantz,
O.
, and
Schmitt,
D.
, 2012, “
Shape Optimization of a Sodium Fast Reactor Core,” CEMRACS, Marseille, France, July 18–Aug. 26, pp. 319–334.

Wei,
P.
, and
Wang,
M. Y.
, 2009, “
Piecewise Constant Level Set Method for Structural Topology Optimization,” Int. J. Numer. Methods Eng.,
78(4), pp. 379–402.

[CrossRef]
Luo,
Z.
,
Tong,
L.
,
Luo,
J.
,
Wei,
P.
, and
Wang,
M. Y.
, 2009, “
Design of Piezoelectric Actuators Using a Multiphase Level Set Method of Piecewise Constants,” J. Comput. Phys.,
228(7), pp. 2643–2659.

[CrossRef]
Hamza,
K.
,
Aly,
M.
, and
Hegazi,
H.
, 2013, “
A Kriging-Interpolated Level-Set Approach for Structural Topology Optimization,” ASME J. Mech. Des.,
136(1), p. 011008.

[CrossRef]
Guirguis,
D.
,
Hamza,
K.
,
Aly,
M.
,
Hegazi,
H.
, and
Saitou,
K.
, 2015, “
Multi-Objective Topology Optimization of Multi-Component Continuum Structures Via a Kriging-Interpolated Level Set Approach,” Struct. Multidiscip. Optim.,
51(3), pp. 733–748.

[CrossRef]
Yoshimura,
M.
,
Shimoyama,
K.
,
Misaka,
T.
, and
Obayashi,
S.
, 2017, “
Topology Optimization of Fluid Problems Using Genetic Algorithm Assisted by the Kriging Model,” Int. J. Numer. Methods Eng.,
109(4), pp. 514–532.

[CrossRef]
Chopp,
D.
, 1993, “
Computing Minimal Surface Via Level Set Curvature Flow,” J. Comput. Phys.,
106(1), pp. 77–91.

[CrossRef]
Sussman,
M.
,
Smereka,
P.
, and
Osher,
S.
, 1994, “
A Level Set Approach for Computing Solutions to Incompressible Two-Phase flow,” J. Comput. Phys.,
114(1), pp. 146–159.

[CrossRef]
Sethian,
J.
, 1999, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Materials Science,
Cambridge University Press,
Cambridge, UK.

Osher,
S.
, and
Fedkiw,
R.
, 2002, Level Set Methods and Dynamic Implicit Surfaces,
Springer,
New York.

Bourdin,
B.
, and
Chambolle,
A.
, 2003, “
Design-Dependent Loads in Topology Optimization,” ESAIM: Control Optim. Calculus Var.,
9, pp. 19–48.

[CrossRef]
Wang,
M. Y.
, and
Zhou,
S.
, 2005, “
Synthesis of Shape and Topology of Multi-Material Structures With a Phase-Field Method,” J. Comput. Aided Mater. Des.,
11(2–3), pp. 117–138.

Bourdin,
B.
, and
Chambolle,
A.
, 2006, “
The Phase-Field Method in Optimal Design,” IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials, Dordrecht, The Netherlands, pp. 207–215.

[CrossRef]
Takezawa,
A.
,
Nishiwaki,
S.
, and
Kitamura,
M.
, 2010, “
Shape and Topology Optimization Based on the Phase Field Method and Sensitivity Analysis,” J. Comput. Phys.,
229(7), pp. 2697–2718.

[CrossRef]
Blank,
L.
,
Garcke,
H.
,
Sarbu,
L.
, and
Styles,
V.
, 2012, “
Primal-Dual Active Set Methods for Allen-Cahn Variational Inequalities With Nonlocal Constraints,” Numer. Methods Partial Differ. Equations,
29(3), pp. 999–1030.

Tavakoli,
R.
, 2014, “
Multimaterial Topology Optimization by Volume Constrained Allen-Cahn system and Regularized Projected Steepest Descent Method,” Comput. Methods Appl. Mech. Eng.,
276, pp. 534–565.

[CrossRef]
Huang,
X.
, and
Xie,
Y. M.
, 2009, “
Bi-Directional Evolutionary Topology Optimization of Continuum Structures With One or Multiple Materials,” Comput. Mech.,
43(3), pp. 393–401.

[CrossRef]
Huang,
X.
, and
Xie,
M.
, 2010, Evolutionary Topology Optimization of Continuum Structures: Methods and Applications,
Wiley,
Chichester, UK.

[CrossRef]
Lund,
E.
, and
Stegmann,
J.
, 2005, “
On Structural Optimization of Composite Shell Structures Using a Discrete Constitutive Parametrization,” Wind Energy,
8(1), pp. 109–124.

[CrossRef]
Stegmann,
J.
, and
Lund,
E.
, 2005, “
Discrete Material Optimization of General Composite Shell Structures,” Int. J. Numer. Methods Eng.,
62(14), pp. 2009–2027.

[CrossRef]
Tovar,
A.
,
Patel,
N. M.
,
Niebur,
G. L.
,
Sen,
M.
, and
Renaud,
J. E.
, 2006, “
Topology Optimization Using a Hybrid Cellular Automation Method With Local Control Rules,” ASME J. Mech. Des.,
128(6), pp. 1205–1216.

[CrossRef]
Tovar,
A.
,
Patel,
N. M.
,
Kaushik,
A. K.
, and
Renaud,
J. E.
, 2007, “
Optimality Conditions of the Hybrid Cellular Automata for Structural Optimization,” AIAA J.,
45(3), pp. 673–683.

[CrossRef]
Goetz,
J.
,
Tan,
H.
,
Renaud,
J.
, and
Tovar,
A.
, 2012, “
Two-Material Optimization of Plate Armour for Blast Mitigation Using Hybrid Cellular Automata,” Eng. Optim.,
44(8), pp. 985–1005.

[CrossRef]
Holmberg,
E.
,
Torstenfelt,
B.
, and
Klarbring,
A.
, 2013, “
Stress Constrained Topology Optimization,” Struct. Multidiscip. Optim.,
48(1), pp. 33–47.

[CrossRef]
Ishikawa,
T.
,
Nakayama,
K.
,
Kurita,
N.
, and
Dawson,
F. P.
, 2014, “
Optimization of Rotor Topology in PM Synchronous Motors by Genetic Algorithm Considering Cluster of Materials and Cleaning Procedure,” IEEE Trans. Magn.,
50(2), pp. 637–640.

[CrossRef]
Ishikawa,
T.
,
Mizuno,
S.
, and
Krita,
N.
, 2017, “
Topology Optimization Method for Asymmetrical Rotor Using Cluster and Cleaning Procedure,” IEEE Trans. Magn.,
53(6), pp. 1–4.

Aulig,
N.
, and
Olhofer,
M.
, 2016, “
State-Based Representation for Structural Topology Optimization and Application to Crashworthiness,” IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, July 24–29, pp. 1642–1649.

Liu,
K.
,
Tovar,
A.
, and
Detwiler,
D.
, 2014, “
Thin-Walled Component Design Optimization for Crashworthiness Using Principles of Compliant Mechanism Synthesis and Kriging Sequential Approximation,” Engineering Optimization, CRC Press, Boca Raton, FL, pp. 775–780.

[CrossRef]
Hashin,
Z.
, and
Shtrikman,
S.
, 1963, “
A Variational Approach to the Elastic Behavior of Multiphase Minerals,” J. Mech. Phys. Solids,
11(2), pp. 127–140.

[CrossRef]
Wang,
Y.-J.
,
Zhang,
J.-S.
, and
Zhang,
G.-Y.
, 2007, “
A Dynamic Clustering Based Differential Evolution Algorithm for Global Optimization,” Eur. J. Oper. Res.,
183(1), pp. 56–73.

[CrossRef]
Xu,
H.
,
Chuang,
C.-H.
, and
Yang,
R.-J.
, 2015, “
A Data Mining-Based Strategy for Direct Multidisciplinary Optimization,” SAE Int. J. Mater. Manuf.,
8(2), pp. 357–363.

[CrossRef]
MacQueen,
J. B.
, 1967, “
Some Methods for Classification and Analysis of Multivariate Observations,” Fifth Berkeley Symposium on Mathematical Statistics and Probability, June 21–July 18 and Dec. 27–Jan. 7, Berkeley, CA, pp. 281–297.

https://projecteuclid.org/euclid.bsmsp/1200512992
Liu,
K.
,
Tovar,
A.
,
Nutwell,
E.
, and
Detwiler,
D.
, 2015, “
Thin-Walled Compliant Mechanism Component Design Assisted by Machine Learning and Multiple Surrogates,” SAE Paper No. 2015-01-1369.

MacKay,
D.
, 2003, Information Theory, Inference, and Learning Algorithms,
Cambridge University Press, Cambridge, UK.

Bandi,
P.
,
Schmiedeler,
J. P.
, and
Tovar,
A.
, 2013, “
Design of Crashworthy Structures With Controlled Energy Absorption in the Hybrid Cellular Automaton Framework,” ASME J. Mech. Des.,
135(9), p. 091002.

[CrossRef]
Lophaven,
S. N.
,
Nielsen,
H. B.
, and
Sondergaard,
J.
, 2002, “
‘Dace’—A ‘Matlab’ Kriging Toolbox,” Technical University of Denmark, Lyngby, Denmark, Technical Report No. IMM-TR-2002-12

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.17.3530&rep=rep1&type=pdf.

Myers,
R.
, and
Montgomery,
D.
, 1995, Response Surface Methodology: Process and Product Optimization Using Designed Experiments,
Wiley,
New York.

Owen,
A. B.
, 1994, “
Controlling Correlations in Latin Hypercube Samples,” J. Am. Stat. Assoc.,
89(428), pp. 1517–1522.

[CrossRef]
Johnson,
M.
,
Moore,
L.
, and
Ylvisaker,
D.
, 1990, “
Minimax and Maximin Distance Designs,” J. Stat. Plann. Inference,
26(2), pp. 131–148.

[CrossRef]
Jones,
D. R.
,
Schonlau,
M.
, and
Welch,
W. J.
, 1998, “
Efficient Global Optimization of Expensive Black-Box Functions,” J. Global Optim.,
13(4), pp. 455–492.

[CrossRef]
Viana,
F. A. C.
,
Haftka,
R. T.
, and
Steffen,
V.
, 2009, “
Multiple Surrogates: How Cross-Validation Errors Can Help Us to Obtain the Best Predictor,” Struct. Multidiscip. Optim.,
39(4), pp. 439–457.

[CrossRef]
Forrester,
A. I. J.
,
Sóbester,
A.
, and
Keane,
A. J.
, 2008, Engineering Design Via Surrogate Modelling: A Practical Guide,
Wiley,
Chichester, UK.

Tavakoli,
R.
, and
Mohseni,
S. M.
, 2014, “
Alternating Active-Phase Algorithm for Multimaterial Topology Optimization Problems: A 115-line MATLAB implementation,” Struct. Multidiscip. Optim.,
49(4), pp. 621–642.

[CrossRef]
Liu,
K.
, and
Tovar,
A.
, 2014, “
An Efficient 3D Topology Optimization Code Written in Matlab,” Struct. Multidiscip. Optim.,
50(6), pp. 1175–1196.

[CrossRef]
Tovar,
A.
, and
Khandelwal,
K.
, 2013, “
Topology Optimization for Minimum Compliance Using a Control Strategy,” Eng. Struct.,
48, pp. 674–682.

[CrossRef]
Bandi,
P.
,
Detwiler,
D.
,
Schmiedeler,
J. P.
, and
Tovar,
A.
, 2015, “
Design of Progressively Folding Thin-Walled Tubular Components Using Compliant Mechanism Synthesis,” Thin-Walled Struct.,
95, pp. 208–220.

[CrossRef]
Saxena,
A.
, and
Ananthasuresh,
G.
, 2000, “
On an Optimal Property of Compliant Topologies,” Struct. Multidiscip. Optim.,
19(1), pp. 36–49.

[CrossRef]