Li,
Q.
,
Zhang,
W.
, and
Chen,
L.
, 2001, “
Design for Control—A Concurrent Engineering Approach for Mechatronic Systems Design,” IEEE/ASME Trans. Mechatronics,
6(2), pp. 161–169.

[CrossRef]
Fathy,
H.
,
Reyer,
J.
,
Papalambros,
P.
, and
Ulsoy,
A. G.
, 2001, “
On the Coupling Between the Plant and Controller Optimization Problems,” American Control Conference (ACC), Arlington, VA, June 25–27, pp. 1864–1869.

Eberhard,
P.
,
Dignath,
F.
, and
Kubler,
L.
, 2003, “
Parallel Evolutionary Optimization of Multibody Systems With Application to Railway Dynamics,” Multibody Syst. Dyn.,
9(2), pp. 143–164.

[CrossRef]
Sjoberg,
J.
,
Zhang,
Q.
,
Ljung,
L.
,
Benveniste,
A.
,
Delyon,
B.
,
Glorennec,
P.
,
Hjalamarsson,
H.
, and
Juditsky,
A.
, 1995, “
Nonlinear Black-Box Modeling in System Identification: A Unified Overview,” Automatica,
31(12), pp. 1691–1724.

[CrossRef]
Pan,
Y.
, and
Wang,
J.
, 2012, “
Model Predictive Control of Unknown Nonlinear Dynamical Systems Based on Recurrent Neural Networks,” IEEE Trans. Ind. Electron.,
59(8), pp. 3089–3101.

[CrossRef]
Bestle,
D.
, and
Eberhard,
P.
, 1992, “
Analyzing and Optimizing Multibody Systems,” Mech. Struct. Mach.,
20(1), pp. 67–92.

[CrossRef]
Wang,
Y.
, and
Bortoff,
S. A.
, 2014, “
Co-Design of Nonlinear Control Systems With Bounded Control Inputs,” World Congress on Intelligent Control and Automation (WCICA), Shenyang, China, June 29–July 4, pp. 3035–3039.

Rodriguez-Fernandez,
M.
,
Egea,
J.
, and
Banga,
J.
, 2006, “
Novel Metaheuristic for Parameter Estimation in Nonlinear Dynamic Biological Systems,” BMC Bioinform.,
7, p. 483.

Chowdhury,
R.
, and
Adhikari,
S.
, 2012, “
Fuzzy Parametric Uncertainty Analysis of Linear Dynamical Systems: A Surrogate Modeling Approach,” Mech. Syst. Signal Process.,
32, pp. 5–17.

[CrossRef]
Gonçalves,
J. P. C.
, and
Ambrósio,
J. A. C.
, 2003, “
Optimization of Vehicle Suspension Systems for Improved Comfort of Road Vehicles Using Flexible Multibody Dynamics,” Nolinear Dyn.,
34(1–2), pp. 113–131.

[CrossRef]
Rasmussen,
J.
, 1998, “
Nonlinear Programming by Cumulative Approximation Refinement,” Struct. Multidiscip. Optim.,
15(1), pp. 1–7.

[CrossRef]
Rodríguez,
J. F.
,
Renaud,
J.
, and
Watson,
L.
, 1998, “
Trust Region Augmented Lagrangian Methods for Sequential Response Surface Approximation and Optimization,” ASME J. Mech. Des.,
120(1), pp. 58–66.

[CrossRef]
Alexandrov,
N. M.
,
Dennis,
J. E.
,
Lewis,
R. M.
, and
Torczon,
V.
, 1998, “
A Trust-Region Framework for Managing the Use of Approximation Models in Optimization,” Struct. Multidiscip. Optim.,
15(1), pp. 16–23.

[CrossRef]
Booker,
A. J.
,
Dennis,
J. E.
,
Frank,
P. D.
,
Serafini,
D. B.
,
Torczon,
V.
, and
Trosset,
M. W.
, 1999, “
A Rigorous Framework for Optimization of Expensive Functions by Surrogates,” Struct. Multidiscip. Optim.,
17(1), pp. 1–13.

[CrossRef]
Goel,
T.
,
Haftka,
R.
,
Shyy,
W.
, and
Queipo,
N.
, 2007, “
Ensemble of Surrogates,” Struct. Multidiscip. Optim.,
33(3), pp. 199–216.

[CrossRef]
Messac,
A.
, and
Mullur,
A.
, 2008, “
A Computationally Efficient Metamodeling Approach for Expensive Multiobjective Optimization,” Optim. Eng.,
9(1), pp. 37–67.

[CrossRef]
Sakata,
S.
,
Ashida,
F.
, and
Zako,
M.
, 2008, “
Approximate Structural Optimization Using Kriging Method and Digital Modeling Technique Considering Noise in Sampling Data,” Comput. Struct.,
86(13–14), pp. 1477–1485.

[CrossRef]
Lin,
Y.
,
Haftka,
R.
,
Queipo,
N.
, and
Fregly,
B.
, 2010, “
Surrogate Articular Contact Models for Computationally Efficient Multibody Dynamic Simulations,” Med. Eng. Phys.,
32(6), pp. 584–594.

[CrossRef] [PubMed]
Jouhaud,
J.-C.
,
Sagaut,
P.
, and
Montagnac,
M.
, 2007, “
A Surrogate-Model Based Multidisciplinary Shape Optimization Method With Application to a 2D Subsonic Airfoil,” Comput. Fluids,
36(3), pp. 520–529.

[CrossRef]
Simpson,
T. W.
,
Booker,
A. J.
,
Ghosh,
D.
,
Giunta,
A. A.
,
Koch,
P. N.
, and
Yang,
R.-J.
, 2004, “
Approximation Methods in Multidisciplinary Analysis and Optimization: A Panel Discussion,” Struct. Multidiscip. Optim.,
27(5), pp. 302–313.

[CrossRef]
Frangos,
M.
,
Marzouk,
Y.
,
Willcox,
K.
, and
van Bloemen Waanders,
B.
, 2010, Surrogate and Reduced-Order Modeling: A Comparison of Approaches for Large-Scale Statistical Inverse Problems,
Wiley, Chichester, UK, pp. 123–149.

Hinze,
M.
, and
Volkwein,
S.
, 2005, “
Proper Orthogonal Decomposition Surrogate Models for Nonlinear Dynamical Systems: Error Estimates and Suboptimal Control,” Dimension Reduction of Large-Scale Systems, Vol. 45,
P. Benner
,
D. Sorensen
, and
V. Mehrmann
, eds.,
Springer,
Berlin.

[CrossRef]
Lucia,
D. J.
,
Beran,
P. S.
, and
Silva,
W. A.
, 2004, “
Reduced-Order Modeling: New Approaches for Computational Physics,” Prog. Aerosp. Sci.,
40(1), pp. 51–117.

[CrossRef]
Alexandrov,
N. M.
,
Lewis,
R. M.
,
Gumbert,
C. R.
,
Green,
L. L.
, and
Newman,
P. A.
, 2001, “
Approximation and Model Management in Aerodynamic Optimization With Variable-Fidelity Models,” J. Aircr.,
38(6), pp. 1093–1101.

[CrossRef]
Lang,
Y.
,
Malacina,
A.
,
Biegler,
L.
,
Munteanu,
S.
,
Madsen,
J.
, and
Zitney,
S.
, 2009, “
Reduced Order Model Based on Principal Component Analysis for Process Simulation and Optimization,” Energy Fuels,
23(3), pp. 1695–1706.

[CrossRef]
Armaou,
A.
, and
Christofides,
P. D.
, 2002, “
Dynamic Optimization of Dissipative PDE Systems Using Nonlinear Order Reduction,” Chem. Eng. Sci.,
57(24), pp. 5083–5114.

[CrossRef]
Barrault,
M.
,
Maday,
Y.
,
Nguyen,
N. C.
, and
Patera,
A. T.
, 2004, “
An Empirical Interpolation Method: Application to Efficient Reduced-Basis Discretization of Partial Differential Equations,” C. R. Math.,
339(9), pp. 667–672.

[CrossRef]
Agarwal,
A.
,
Biegler,
L.
, and
Zitney,
S.
, 2009, “
Simulation and Optimization of Pressure Swing Adsorption Systems Using Reduced-Order Modeling,” Ind. Eng. Chem. Res.,
48(5), pp. 2327–2343.

[CrossRef]
Bai,
Z.
, 2002, “
Krylov Subspace Techniques for Reduced-Order Modeling of Large-Scale Dynamical Systems,” Appl. Numer. Math.,
43(1–2), pp. 9–44.

[CrossRef]
Han,
J.
,
Rudnyi,
E.
, and
Korvink,
J.
, 2005, “
Efficient Optimization of Transient Dynamic Problems in Mems Devices Using Model Order Reduction,” J. Micromech. Microeng.,
15(4), pp. 822–832.

[CrossRef]
Baker,
M. L.
, 1996, “
Model Reduction of Large, Sparse, Discrete Time Systems With Applications to Unsteady Aerodynamics,” Ph.D. thesis, University of California Los Angeles, Los Angeles, CA.

Dowell,
E. H.
,
Hall,
K. C.
, and
Romanowski,
M. C.
, 1997, “
Eigenmode Analysis in Unsteady Aerodynamics: Reduced Order Models,” ASME Appl. Mech. Rev.,
50(6), pp. 371–386.

[CrossRef]
Akhtar,
I.
,
Borggaard,
J.
, and
Burns,
J. A.
, 2010, “
High Performance Computing for Energy Efficient Buildings,” Eighth International Conference on Frontiers of Information Technology (FIT), Islamabad, Pakistan, Dec. 21–23, Paper No. 36.

Kerschen,
G.
,
Golinval,
J.
,
Vakakis,
A.
, and
Bergman,
L.
, 2005, “
The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: An Overview,” Nolinear Dyn.,
41(1–3), pp. 147–169.

[CrossRef]
Rewienski,
M.
, and
White,
J.
, 2006, “
Model Order Reduction for Nonlinear Dynamical Systems Based on Trajectory Piecewise-Linear Approximations,” Linear Algebra Appl.,
415(2), pp. 426–454.

[CrossRef]
Dong,
N.
, and
Roychowdhury,
J.
, 2003, “
Piecewise Polynomial Nonlinear Model Reduction,” Design Automation Conference (DAC), Anaheim, CA, June 2–6, pp. 484–489.

Chaturantabut,
S.
, and
Sorensen,
D.
, 2010, “
Nonlinear Model Reduction Via Discrete Empirical Interpolation,” SIAM J. Sci. Comput.,
32(5), pp. 2737–2764.

[CrossRef]
Forrester,
A.
,
Sobester,
A.
, and
Keane,
A.
, 2008, Engineering Design Via Surrogate Modelling: A Practical Guide,
Wiley, Chichester, UK.

Dallard,
P.
,
Fitzpatrick,
T.
,
Flint,
A.
,
Low,
A.
,
Smith,
R. R.
,
Willford,
M.
, and
Roche,
M.
, 2001, “
London Millennium Bridge: Pedestrian-Induced Lateral Vibration,” J. Bridge Eng.,
6(6), pp. 412–417.

[CrossRef]
Inman,
D. J.
, 2007, Engineering Vibrations, 3rd ed.,
Pearson, London.

Dimitrovová,
Z.
, and
Rodrigues,
H. C.
, 2010, “
Optimization of Passive Vibration Isolators Mechanical Characteristics,” Struct. Multidiscip. Optim.,
42(3), pp. 325–340.

[CrossRef]
Koziel,
S.
, and
Bandler,
J. W.
, 2007, “
Space-Mapping Optimization With Adaptive Surrogate Model,” IEEE Trans. Microwave Theory Tech.,
55(3), pp. 541–547.

[CrossRef]
Rao,
L. G.
,
Schuh,
J.
,
Ewoldt,
R. H.
, and
Allison,
J. T.
, 2015, “
On Using Adaptive Surrogate Modeling in Design for Efficient Fluid Power,” ASME Paper No. DETC2015-46832.

Allison,
J. T.
, and
Herber,
D.
, 2014, “
Multidisciplinary Design Optimization for Dynamic Engineering Systems,” AIAA J.,
52(4), pp. 691–710.

[CrossRef]
Shamma,
J. S.
, and
Athans,
M.
, 1990, “
Analysis of Gain Scheduled Control for Nonlinear Plants,” IEEE Trans. Autom. Control,
35(8), pp. 898–907.

[CrossRef]
Wu,
F.
, and
Dong,
K.
, 2006, “
Gain-Scheduling Control of LFT Systems Using Parameter-Dependent Lyapunov Functions,” Automatica,
42(1), pp. 39–50.

[CrossRef]
Ito,
K.
, and
Kunisch,
K.
, 2006, “
Reduced Order Control Based on Approximate Inertial Manifolds,” Linear Algebra Appl.,
415(2), pp. 531–541.

[CrossRef]
Lall,
S.
,
Marsden,
J. E.
, and
Glavaki,
S.
, 2002, “
A Subspace Approach to Balanced Truncation for Model Reduction of Nonlinear Control Systems,” Int. J. Robust Nonlinear Control,
12(6), pp. 519–535.

[CrossRef]
Koziel,
S.
,
Cheng,
Q. S.
, and
Bandler,
J. W.
, 2008, “
Space Mapping,” IEEE Microwave Mag.,
9(6), pp. 105–122.

[CrossRef]
Yu,
Y. Q.
,
Howell,
L. L.
,
Lusk,
C.
,
Yue,
Y.
, and
He,
M. G.
, 2005, “
Dynamic Modeling of Compliant Mechanisms Based on the Pseudo-Rigid-Body Model,” ASME J. Mech. Des.,
127(4), pp. 760–765.

[CrossRef]
Wang,
W.
, and
Yu,
Y.
, 2010, “
New Approach to the Dynamic Modeling of Compliant Mechanisms,” ASME J. Mech. Rob.,
2(2), p. 021003.

[CrossRef]
Cardou,
P.
,
Pasini,
D.
, and
Angeles,
J.
, 2008, “
Lumped Elastodynamic Model for Mems: Formulation and Validation,” J. Microelectromech. Syst.,
17(4), pp. 948–961.

[CrossRef]
Fowler,
R.
,
Howell,
L.
, and
Magleby,
S.
, 2011, “
Compliant Space Mechanisms: A New Frontier for Compliant Mechanisms,” Mech. Sci.,
2(2), pp. 205–215.

[CrossRef]
Halverson,
P. A.
,
Bowden,
A. E.
, and
Howell,
L. L.
, 2011, “
A Pseudo-Rigid-Body Model of the Human Spine to Predict Implant-Induced Changes on Motion,” ASME J. Mech. Rob.,
3(4), p. 041008.

[CrossRef]
Wu,
X.
,
Downes,
M. S.
,
Goktekin,
T.
, and
Tendick,
F.
, 2001, “
Adaptive Nonlinear Finite Elements for Deformable Body Simulation Using Dynamic Progressive Meshes,” Comput. Graphics Forum,
20(3), pp. 349–358.

[CrossRef]
Brown,
J.
,
Sorkin,
S.
,
Bruyns,
C.
,
Latombe,
J. C.
,
Montgomery,
K.
, and
Stephanides,
M.
, 2001, “
Real-Time Simulation of Deformable Objects: Tools and Application,” 14th Conference on Computer Animation (CA), Seoul, South Korea, Nov. 7–8, pp. 228–258.

Barbič,
J.
, and
Zhao,
Y.
, 2011, “
Real-Time Large-Deformation Substructuring,” ACM Trans. Graphics,
30(4), p. 91.

[CrossRef]
Errera,
M.
,
Dugeai,
A.
,
Girodroux-Lavigne,
P.
,
Garaud,
J.
,
Poinot,
M.
,
Cerqueira,
S.
, and
Chaineray,
G.
, 2011, “
Multi-Physics Coupling Approaches for Aerospace Numerical Simulations,” Aerosp. Lab,
2, pp. 1–16.

http://www.aerospacelab-journal.org/sites/www.aerospacelab-journal.org/files/AL2-09.pdf
Dede,
E.
,
Lee,
J.
, and
Nomura,
T.
, 2014, Multiphysics Simulation: Electromechanical System Applications and Optimization,
Springer,
London.

Bouvard,
J. L.
,
Ward,
D. K.
,
Hossain,
D.
,
Nouranian,
S.
,
Marin,
E. B.
, and
Horstemeyer,
M. F.
, 2009, “
Review of Hierarchical Multiscale Modeling to Describe the Mechanical Behavior of Amorphous Polymers,” ASME J. Eng. Mater. Technol.,
131(4), p. 041206.

[CrossRef]
Esposito,
J. M.
, and
Kumar,
V.
, 2001, “
Efficient Dynamic Simulation of Robotic Systems With Hierarchy,” IEEE International Conference on Robotics and Automation (ICRA), Seoul, South Korea, May 21–26, pp. 2818–2823.

Ziemys,
A.
,
Kojic,
M.
,
Milosevic,
M.
,
Kojic,
N.
,
Hussain,
F.
,
Ferrari,
M.
, and
Grattoni,
A.
, 2011, “
Hierarchical Modeling of Diffusive Transport Through Nanochannels by Coupling Molecular Dynamics With Finite Element Method,” J. Comput. Phys.,
230(14), pp. 5722–5731.

[CrossRef]
Ascher,
U. M.
, and
Petzold,
L. R.
, 1998, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations,
SIAM, Philadelphia, PA.

[CrossRef]
Kokotovic,
P.
,
Khalil,
H.
, and
O'Reilly,
J.
, 1999, Singular Perturbation Methods in Control: Analysis and Design,
SIAM, Philadelphia, PA.

[CrossRef]
Narang-Siddarth,
A.
, and
Valasek,
J.
, 2014, Nonlinear Time Scale Systems in Standard and Nonstandard Forms: Analysis and Control,
SIAM,
Philadelphia, PA.

[CrossRef]
McKay,
M. D.
,
Beckman,
R. J.
, and
Conover,
W. J.
, 1979, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code,” Technometrics,
21(2), pp. 239–245.

Park,
J.
, and
Sandberg,
I. W.
, 1991, “
Universal Approximation Using Radial-Basis-Function Networks,” Neural Comput.,
3(2), pp. 246–257.

[CrossRef]
Mullur,
A.
, and
Messac,
A.
, 2005, “
Extended Radial Basis Functions: More Flexible and Effective Metamodeling,” AIAA J.,
43(6), pp. 1306–1315.

[CrossRef]
Tax,
D. M. J.
, and
Duin,
R. P. W.
, 1999, “
Support Vector Domain Description,” Pattern Recognit. Lett.,
20(11), pp. 1191–1199.

[CrossRef]
Alexander,
M. J.
,
Allison,
J. T.
,
Papalambros,
P. Y.
, and
Gorsich,
D. J.
, 2011, “
Constraint Management of Reduced Representation Variables in Decomposition-Based Design Optimization,” ASME J. Mech. Des.,
133(10), p. 101014.

[CrossRef]
Jin,
R.
,
Chen,
W.
, and
Simpson,
T.
, 2001, “
Comparative Studies of Metamodelling Techniques Under Multiple Modelling Criteria,” Struct. Multidiscip. Optim.,
23(1), pp. 1–13.

[CrossRef]
Hussain,
M.
,
Barton,
R.
, and
Joshi,
S.
, 2002, “
Metamodeling: Radial Basis Functions Versus Polynomials,” Eur. J. Oper. Res.,
138(1), pp. 142–154.

[CrossRef]
Fathy,
H. K.
,
Papalambros,
P. Y.
,
Ulsoy,
A. G.
, and
Hrovat,
D.
, 2003, “
Nested Plant/Controller Optimization With Application to Combined Passive/Active Automotive Suspensions,” American Control Conference (ACC), Denver, CO, June 4–6, pp. 3375–3380.

Cramer,
E. J.
,
Dennis,
J. E., Jr.
,
Frank,
P. D.
,
Lewis,
R. M.
, and
Shubin,
G. R.
, 1994, “
Problem Formulation for Multidisciplinary Optimization,” SIAM J. Optim.,
4(4), pp. 754–776.

[CrossRef]
Allison,
J. T.
,
Guo,
T.
, and
Han,
Z.
, 2014, “
Co-Design of an Active Suspension Using Simultaneous Dynamic Optimization,” ASME J. Mech. Des.,
136(8), p. 081003.

[CrossRef]
Deshmukh,
A. P.
,
Herber,
D. R.
, and
Allison,
J. T.
, 2015, “
Bridging the Gap Between Open-Loop and Closed-Loop Control in Co-Design: A Framework for Complete Optimal Plant and Control Architecture Design,” American Control Conference (ACC), Chicago, IL, July 1–3, pp. 4916–4922.

Pontryagin,
L. S.
, 1962, The Mathematical Theory of Optimal Processes,
Interscience, Geneva, Switzerland.

Betts,
J. T.
, 2010, Practical Methods for Optimal Control and Estimation Using Nonlinear Programming,
SIAM,
Philadelphia, PA.

[CrossRef]
Biegler,
L. T.
, 2010, Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes,
SIAM,
Philadelphia, PA.

[CrossRef]
Akesson,
J.
,
Arzen,
K.-E.
,
Gafvert,
M.
,
Bergdahl,
T.
, and
Tummescheit,
H.
, 2010, “
Modeling and Optimization With Optimica and JModelica.org—Languages and Tools for Solving Large-Scale Dynamic Optimization Problems,” Comput. Chem. Eng.,
34(11), pp. 1737–1749.

[CrossRef]
Matallana,
L.
,
Blanco,
A.
, and
Bandoni,
J.
, 2011, “
Nonlinear Dynamic Systems Design Based on the Optimization of the Domain of Attraction,” Math. Comput. Modell.,
53(5–6), pp. 731–745.

[CrossRef]
Hau,
E.
, and
von Renouard,
H.
, 2006, “
Wind Turbine Costs,” Wind Turbines,
Springer,
Berlin, pp. 703–750.

[PubMed] [PubMed]
Deshmukh,
A. P.
, and
Allison,
J. T.
, 2016, “
Multidisciplinary Dynamic Optimization of Horizontal Axis Wind Turbine Design,” Struct. Multidiscip. Optim.,
53(1), pp. 15–27.

[CrossRef]
Thiringer,
T.
, and
Linders,
J.
, 1993, “
Control by Variable Rotor Speed of a Fixed-Pitch Wind Turbine Operating in a Wide Speed Range,” IEEE Trans. Energy Convers.,
8(3), pp. 520–526.

[CrossRef]
Brower,
M.
, 2009, “
Development of Eastern Regional Wind Resource and Wind Plant Output Datasets,” National Renewable Energy Laboratory, Golden, CO, Report No. NREL/SR-550-46764.

http://www.nrel.gov/docs/fy10osti/46764.pdf