Sharma,
V.
,
Wang,
C.
,
Lorenzini,
R. G.
,
Ma,
R.
,
Zhu,
Q.
,
Sinkovits,
D. W.
,
Pilania,
G.
,
Oganov,
A. R.
,
Kumar,
S.
, and
Sotzing,
G. A.
, 2014, “
Rational Design of All Organic Polymer Dielectrics,” Nat. Commun.,
5, p. 4845.

Baldwin,
A. F.
,
Huan,
T. D.
,
Ma,
R.
,
Mannodi-Kanakkithodi,
A.
,
Tefferi,
M.
,
Katz,
N.
,
Cao,
Y.
,
Ramprasad,
R.
, and
Sotzing,
G. A.
, 2015, “
Rational Design of Organotin Polyesters,” Macromolecules,
48(8), pp. 2422–2428.

[CrossRef]
Ma,
R.
,
Sharma,
V.
,
Baldwin,
A. F.
,
Tefferi,
M.
,
Offenbach,
I.
,
Cakmak,
M.
,
Weiss,
R.
,
Cao,
Y.
,
Ramprasad,
R.
, and
Sotzing,
G. A.
, 2015, “
Rational Design and Synthesis of Polythioureas as Capacitor Dielectrics,” J. Mater. Chem. A,
3(28), pp. 14845–14852.

[CrossRef]
Kalidindi,
S. R.
, and
De Graef,
M.
, 2015, “
Materials Data Science: Current Status and Future Outlook,” Annu. Rev. Mater. Res.,
45(1), pp. 171–193.

[CrossRef]
Kaczmarowski,
A.
,
Yang,
S.
,
Szlufarska,
I.
, and
Morgan,
D.
, 2015, “
Genetic Algorithm Optimization of Defect Clusters in Crystalline Materials,” Comput. Mater. Sci.,
98, pp. 234–244.

[CrossRef]
Kirklin,
S.
,
Saal,
J. E.
,
Hegde,
V. I.
, and
Wolverton,
C.
, 2016, “
High-Throughput Computational Search for Strengthening Precipitates in Alloys,” Acta Mater.,
102, pp. 125–135.

[CrossRef]
Xu,
H.
,
Dikin,
D. A.
,
Burkhart,
C.
, and
Chen,
W.
, 2014, “
Descriptor-Based Methodology for Statistical Characterization and 3D Reconstruction of Microstructural Materials,” Comput. Mater. Sci.,
85, pp. 206–216.

[CrossRef]
Xu,
H.
,
Liu,
R.
,
Choudhary,
A.
, and
Chen,
W.
, 2015, “
A Machine Learning-Based Design Representation Method for Designing Heterogeneous Microstructures,” ASME J. Mech. Des.,
137(5), p. 051403.

[CrossRef]
Dosovitskiy,
A.
, and
Brox,
T.
, 2015, “
Inverting Visual Representations With Convolutional Networks,” eprint arXiv:1506.02753.

Mahendran,
A.
, and
Vedaldi,
A.
, 2015, “
Understanding Deep Image Representations by Inverting Them,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, June 7–12, pp. 5188–5196.

Nguyen,
A.
,
Yosinski,
J.
, and
Clune,
J.
, 2015, “
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, June 7–12, pp. 427–436.

Krizhevsky,
A.
,
Sutskever,
I.
, and
Hinton,
G. E.
, 2012, “
ImageNet Classification With Deep Convolutional Neural Networks,” Advances in Neural Information Processing Systems 25,
F. Pereira
,
C. J. C. Burges
,
L. Bottou
, and
K. Q. Weinberger
, eds., Curran Associates, Lake Tahoe, NV, pp. 1097–1105.

Simonyan,
K.
, and
Zisserman,
A.
, 2014, “
Very Deep Convolutional Networks for Large-Scale Image Recognition,” eprint arXiv:1409.1556.

Yan,
X.
,
Yang,
J.
,
Sohn,
K.
, and
Lee,
H.
, 2015, “
Attribute2Image: Conditional Image Generation From Visual Attributes,” eprint arXiv:1512.00570.

McDowell,
D. L.
, and
Olson,
G. B.
, 2008, “
Concurrent Design of Hierarchical Materials and Structures,” Sci. Model. Simul.,
15, pp. 207–240.

[CrossRef]
Broderick,
S.
,
Suh,
C.
,
Nowers,
J.
,
Vogel,
B.
,
Mallapragada,
S.
,
Narasimhan,
B.
, and
Rajan,
K.
, 2008, “
Informatics for Combinatorial Materials Science,” JOM,
60(3), pp. 56–59.

[CrossRef]
Ashby,
M. F.
, and
Cebon,
D.
, 1993, “
Materials Selection in Mechanical Design,” J. Phys. IV,
3(C7), pp. C7-1–C7-9.

Karasek,
L.
, and
Sumita,
M.
, 1996, “
Characterization of Dispersion State of Filler and Polymer-Filler Interactions in Rubber Carbon Black Composites,” Mater. Sci.,
31(2), pp. 281–289.

[CrossRef]
Rollett,
A. D.
,
Lee,
S.-B.
,
Campman,
R.
, and
Rohrer,
G.
, 2007, “
Three-Dimensional Characterization of Microstructure by Electron Back-Scatter Diffraction,” Annu. Rev. Mater. Res.,
37(1), pp. 627–658.

[CrossRef]
Borbely,
A.
,
Csikor,
F.
,
Zabler,
S.
,
Cloetens,
P.
, and
Biermann,
H.
, 2004, “
Three-Dimensional Characterization of the Microstructure of a Metal–Matrix Composite by Holotomography,” Mater. Sci. Eng. A,
367(1), pp. 40–50.

[CrossRef]
Tewari,
A.
, and
Gokhale,
A.
, 2004, “
Nearest-Neighbor Distances Between Particles of Finite Size in Three-Dimensional Uniform Random Microstructures,” Mater. Sci. Eng. A,
385(1), pp. 332–341.

[CrossRef]
Pytz,
R.
, 2004, “
Microstructure Description of Composites, Statistical Methods,” Mechanics of Microstructure Materials (Courses and Lectures),
Springer,
Vienna, Austria.

Steinzig,
M.
, and
Harlow,
F.
, 1999, “
Probability Distribution Function Evolution for Binary Alloy Solidification,” Minerals, Metals, Materials Society Annual Meeting, Citeseer, San Diego, CA, pp. 197–206.

Scalon,
J.
,
Fieller,
N.
,
Stillman,
E.
, and
Atkinson,
H.
, 2003, “
Spatial Pattern Analysis of Second-Phase Particles in Composite Materials,” Mater. Sci. Eng. A,
356(1), pp. 245–257.

[CrossRef]
Torquato,
S.
, 2013, Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Vol.
16,
Springer Science & Business Media, New York.

Sundararaghavan,
V.
, and
Zabaras,
N.
, 2005, “
Classification and Reconstruction of Three-Dimensional Microstructures Using Support Vector Machines,” Comput. Mater. Sci.,
32(2), pp. 223–239.

[CrossRef]
Basanta,
D.
,
Miodownik,
M. A.
,
Holm,
E. A.
, and
Bentley,
P. J.
, 2005, “
Using Genetic Algorithms to Evolve Three-Dimensional Microstructures From Two-Dimensional Micrographs,” Metall. Mater. Trans. A,
36(7), pp. 1643–1652.

[CrossRef]
Holotescu,
S.
, and
Stoian,
F.
, 2011, “
Prediction of Particle Size Distribution Effects on Thermal Conductivity of Particulate Composites,” Materialwiss. Werkstofftech.,
42(5), pp. 379–385.

[CrossRef]
Klaysom,
C.
,
Moon,
S.-H.
,
Ladewig,
B. P.
,
Lu,
G. M.
, and
Wang,
L.
, 2011, “
The Effects of Aspect Ratio of Inorganic Fillers on the Structure and Property of Composite Ion-Exchange Membranes,” J. Colloid Interface Sci.,
363(2), pp. 431–439.

[CrossRef] [PubMed]
Gruber,
J.
,
Rollett,
A.
, and
Rohrer,
G.
, 2010, “
Misorientation Texture Development During Grain Growth—Part II: Theory,” Acta Mater.,
58(1), pp. 14–19.

[CrossRef]
Liu,
Y.
,
Greene,
M. S.
,
Chen,
W.
,
Dikin,
D. A.
, and
Liu,
W. K.
, 2013, “
Computational Microstructure Characterization and Reconstruction for Stochastic Multiscale Material Design,” Comput.-Aided Des.,
45(1), pp. 65–76.

[CrossRef]
Quiblier,
J. A.
, 1984, “
A New Three-Dimensional Modeling Technique for Studying Porous Media,” J. Colloid Interface Sci.,
98(1), pp. 84–102.

[CrossRef]
Jiang,
Z.
,
Chen,
W.
, and
Burkhart,
C.
, 2013, “
Efficient 3D Porous Microstructure Reconstruction Via Gaussian Random Field and Hybrid Optimization,” J. Microsc.,
252(2), pp. 135–148.

[CrossRef] [PubMed]
Grigoriu,
M.
, 2003, “
Random Field Models for Two-Phase Microstructures,” J. Appl. Phys.,
94(6), pp. 3762–3770.

[CrossRef]
Roberts,
A. P.
, 1997, “
Statistical Reconstruction of Three-Dimensional Porous Media From Two-Dimensional Images,” Phys. Rev. E,
56(3), p. 3203.

[CrossRef]
Yeong,
C.
, and
Torquato,
S.
, 1998, “
Reconstructing Random Media,” Phys. Rev. E,
57(1), p. 495.

[CrossRef]
Jiao,
Y.
,
Stillinger,
F.
, and
Torquato,
S.
, 2008, “
Modeling Heterogeneous Materials Via Two-Point Correlation Functions—II: Algorithmic Details and Applications,” Phys. Rev. E,
77(3), p. 031135.

[CrossRef]
Jiao,
Y.
,
Stillinger,
F.
, and
Torquato,
S.
, 2009, “
A Superior Descriptor of Random Textures and Its Predictive Capacity,” Proc. Natl. Acad. Sci.,
106(42), pp. 17634–17639.

[CrossRef]
Karsanina,
M. V.
,
Gerke,
K. M.
,
Skvortsova,
E. B.
, and
Mallants,
D.
, 2015, “
Universal Spatial Correlation Functions for Describing and Reconstructing Soil Microstructure,” PloS One,
10(5), p. e0126515.

[CrossRef] [PubMed]
Fullwood,
D.
,
Kalidindi,
S.
,
Niezgoda,
S.
,
Fast,
A.
, and
Hampson,
N.
, 2008, “
Gradient-Based Microstructure Reconstructions From Distributions Using Fast Fourier Transforms,” Mater. Sci. Eng. A,
494(1), pp. 68–72.

[CrossRef]
Fullwood,
D. T.
,
Niezgoda,
S. R.
, and
Kalidindi,
S. R.
, 2008, “
Microstructure Reconstructions From 2-Point Statistics Using Phase-Recovery Algorithms,” Acta Mater.,
56(5), pp. 942–948.

[CrossRef]
Okabe,
H.
, and
Blunt,
M. J.
, 2005, “
Pore Space Reconstruction Using Multiple-Point Statistics,” J. Pet. Sci. Eng.,
46(1), pp. 121–137.

[CrossRef]
Hajizadeh,
A.
,
Safekordi,
A.
, and
Farhadpour,
F. A.
, 2011, “
A Multiple-Point Statistics Algorithm for 3D Pore Space Reconstruction From 2D Images,” Adv. Water Resour.,
34(10), pp. 1256–1267.

[CrossRef]
Matthews,
J.
,
Klatt,
T.
,
Morris,
C.
,
Seepersad,
C. C.
,
Haberman,
M.
, and
Shahan,
D.
, 2016, “
Hierarchical Design of Negative Stiffness Metamaterials Using a Bayesian Network Classifier,” ASME J. Mech. Des.,
138(4), p. 041404.

[CrossRef]
Tahmasebi,
P.
, and
Sahimi,
M.
, 2013, “
Cross-Correlation Function for Accurate Reconstruction of Heterogeneous Media,” Phys. Rev. Lett.,
110(7), p. 078002.

[CrossRef] [PubMed]
Tahmasebi,
P.
, and
Sahimi,
M.
, 2015, “
Reconstruction of Nonstationary Disordered Materials and Media: Watershed Transform and Cross-Correlation Function,” Phys. Rev. E,
91(3), p. 032401.

[CrossRef]
Liu,
X.
, and
Shapiro,
V.
, 2015, “
Random Heterogeneous Materials Via Texture Synthesis,” Comput. Mater. Sci.,
99, pp. 177–189.

[CrossRef]
Bostanabad,
R.
,
Bui,
A. T.
,
Xie,
W.
,
Apley,
D. W.
, and
Chen,
W.
, 2016, “
Stochastic Microstructure Characterization and Reconstruction Via Supervised Learning,” Acta Mater.,
103, pp. 89–102.

[CrossRef]
Hinton,
G.
,
Deng,
L.
,
Yu,
D.
,
Dahl,
G. E.
,
Mohamed,
A.-R.
,
Jaitly,
N.
,
Senior,
A.
,
Vanhoucke,
V.
,
Nguyen,
P.
, and
Sainath,
T. N.
, 2012, “
Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups,” IEEE Signal Process. Mag.,
29(6), pp. 82–97.

[CrossRef]
Mnih,
V.
,
Kavukcuoglu,
K.
,
Silver,
D.
,
Graves,
A.
,
Antonoglou,
I.
,
Wierstra,
D.
, and
Riedmiller,
M.
, 2013, “
Playing Atari With Deep Reinforcement Learning,” eprint arXiv:1312.5602.

Schmidhuber,
J.
, 2015, “
Deep Learning in Neural Networks: An Overview,” Neural Networks,
61, pp. 85–117.

[CrossRef] [PubMed]
Levine,
S.
,
Finn,
C.
,
Darrell,
T.
, and
Abbeel,
P.
, 2015, “
End-to-End Training of Deep Visuomotor Policies,” eprint arXiv:1504.00702.

Reed,
S. E.
,
Zhang,
Y.
,
Zhang,
Y.
, and
Lee,
H.
, 2015, “
Deep Visual Analogy-Making,” Advances in Neural Information Processing Systems, Curran Associates, Inc., Boston, MA, pp. 1252–1260.

Lee,
H.
,
Grosse,
R.
,
Ranganath,
R.
, and
Ng,
A. Y.
, 2009, “
Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations,” 26th Annual International Conference on Machine Learning (ICML), Montreal, QC, Canada, June 14–18, pp. 609–616.

Bousquet,
O.
, and
Bottou,
L.
, 2008, “
The Tradeoffs of Large Scale Learning,” Proceedings of the 20th International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, Dec. 3–6, pp. 161–168.

Rumelhart,
D. E.
,
Hinton,
G. E.
, and
Williams,
R. J.
, 1988, “
Learning Representations by Back-Propagating Errors,” Cognit. Model.,
5(3), p. 1.

Hinton,
G. E.
, 2002, “
Training Products of Experts by Minimizing Contrastive Divergence,” Neural Comput.,
14(8), pp. 1771–1800.

[CrossRef] [PubMed]
Bengio,
Y.
, 2009, “
Learning Deep Architectures for AI,” Found. Trends Mach. Learn.,
2(1), pp. 1–127.

[CrossRef]
Yumer,
M. E.
,
Asente,
P.
,
Mech,
R.
, and
Kara,
L. B.
, 2015, “
Procedural Modeling Using Autoencoder Networks,” 28th Annual ACM Symposium on User Interface Software and Technology (UIST), Charlotte, NC, Nov. 11–15, pp. 109–118.

Kingma,
D. P.
, and
Welling,
M.
, 2013, “
Auto-Encoding Variational Bayes,” eprint arXiv:1312.6114.

Goodfellow,
I.
,
Pouget-Abadie,
J.
,
Mirza,
M.
,
Xu,
B.
,
Warde-Farley,
D.
,
Ozair,
S.
,
Courville,
A.
, and
Bengio,
Y.
, 2014, “
Generative Adversarial Nets,” Advances in Neural Information Processing Systems, Curran Associates, Inc., Boston, MA, pp. 2672–2680.

[PubMed] [PubMed]
Sohn,
K.
, and
Lee,
H.
, 2012, “
Learning Invariant Representations With Local Transformations,” eprint arXiv:1206.6418.

van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., Gouillart, E., Yu, T., and The Scikit-Image Contributors, 2014, “
Scikit-Image: Image Processing in Python,” Peer J.,
2, p. e453.

Jiao,
Y.
,
Padilla,
E.
, and
Chawla,
N.
, 2013, “
Modeling and Predicting Microstructure Evolution in Lead/Tin Alloy Via Correlation Functions and Stochastic Material Reconstruction,” Acta Mater.,
61(9), pp. 3370–3377.

[CrossRef]
Li,
H.
,
Kaira,
S.
,
Mertens,
J.
,
Chawla,
N.
, and
Jiao,
Y.
, 2016, “
Accurate Stochastic Reconstruction of Heterogeneous Microstructures by Limited X-ray Tomographic Projections,” J. Microsc.,
264(3), pp. 339–350.

[CrossRef] [PubMed]
Li,
H.
,
Chawla,
N.
, and
Jiao,
Y.
, 2014, “
Reconstruction of Heterogeneous Materials Via Stochastic Optimization of Limited-Angle X-ray Tomographic Projections,” Scr. Mater.,
86, pp. 48–51.

[CrossRef]
Chen,
H.
,
Lin,
E.
,
Jiao,
Y.
, and
Liu,
Y.
, 2014, “
A Generalized 2D Non-Local Lattice Spring Model for Fracture Simulation,” Comput. Mech.,
54(6), pp. 1541–1558.

[CrossRef]