0
Research Papers: Design Automation

Characterization and Design of Functional Quasi-Random Nanostructured Materials Using Spectral Density Function

[+] Author and Article Information
Shuangcheng Yu

Mechanical Engineering,
Northwestern University,
2145 Sheridan Road,
Evanston, IL 60208
e-mail: shuangchengyu2012@u.northwestern.edu

Yichi Zhang

Mechanical Engineering,
Northwestern University,
2145 Sheridan Road,
Evanston, IL 60208
e-mail: yichizhang2013@u.northwestern.edu

Chen Wang

Mechanical Engineering,
Northwestern University,
2145 Sheridan Road,
Evanston, IL 60208
e-mail: chenwang2015@u.northwestern.edu

Won-kyu Lee

Material Science and Engineering,
Northwestern University,
2145 Sheridan Road,
Evanston, IL 60208
e-mail: wonkyulee2017@u.northwestern.edu

Biqin Dong

Biomedical Engineering,
Northwestern University,
2145 Sheridan Road,
Evanston, IL 60208
e-mail: dongbq@northwestern.edu

Teri W. Odom

Chemistry,
Northwestern University,
Evanston, IL 60208;
Material Science and Engineering,
Northwestern University,
2145 Sheridan Road,
Evanston, IL 60208
e-mail: todom@northwestern.edu

Cheng Sun

Mechanical Engineering,
Northwestern University,
2145 Sheridan Road,
Evanston, IL 60208
e-mail: c-sun@northwestern.edu

Wei Chen

Mechanical Engineering,
Northwestern University,
2145 Sheridan Road,
Evanston, IL 60208
e-mail: weichen@northwestern.edu

1Corresponding author.

Contributed by the Design Automation Committee of ASME for publication in the JOURNAL OF MECHANICAL DESIGN. Manuscript received June 9, 2016; final manuscript received April 13, 2017; published online May 10, 2017. Assoc. Editor: James K. Guest.

J. Mech. Des 139(7), 071401 (May 10, 2017) (12 pages) Paper No: MD-16-1431; doi: 10.1115/1.4036582 History: Received June 09, 2016; Revised April 13, 2017

Quasi-random nanostructures are playing an increasingly important role in developing advanced material systems with various functionalities. Current development of functional quasi-random nanostructured material systems (NMSs) mainly follows a sequential strategy without considering the fabrication conditions in nanostructure optimization, which limits the feasibility of the optimized design for large-scale, parallel nanomanufacturing using bottom-up processes. We propose a novel design methodology for designing isotropic quasi-random NMSs that employs spectral density function (SDF) to concurrently optimize the nanostructure and design the corresponding nanomanufacturing conditions of a bottom-up process. Alternative to the well-known correlation functions for characterizing the structural correlation of NMSs, the SDF provides a convenient and informative design representation that maps processing–structure relation to enable fast explorations of optimal fabricable nanostructures and to exploit the stochastic nature of manufacturing processes. In this paper, we first introduce the SDF as a nondeterministic design representation for quasi-random NMSs, as an alternative to the two-point correlation function. Efficient reconstruction methods for quasi-random NMSs are developed for handling different morphologies, such as the channel-type and particle-type, in simulation-based microstructural design. The SDF-based computational design methodology is illustrated by the optimization of quasi-random light-trapping nanostructures in thin-film solar cells for both channel-type and particle-type NMSs. Finally, the concurrent design strategy is employed to optimize the quasi-random light-trapping structure manufactured via scalable wrinkle nanolithography process.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Smith, D. R. , Pendry, J. B. , and Wiltshire, M. C. K. , 2004, “ Metamaterials and Negative Refractive Index,” Science, 305(5685), pp. 788–792. [CrossRef] [PubMed]
Liu, Y. M. , and Zhang, X. , 2011, “ Metamaterials: A New Frontier of Science and Technology,” Chem. Soc. Rev., 40(5), pp. 2494–2507. [CrossRef] [PubMed]
Nicolaou, Z. G. , and Motter, A. E. , 2012, “ Mechanical Metamaterials With Negative Compressibility Transitions,” Nat. Mater., 11(7), pp. 608–613. [CrossRef] [PubMed]
Wang, C. , Yu, S. C. , Chen, W. , and Sun, C. , 2013, “ Highly Efficient Light-Trapping Structure Design Inspired By Natural Evolution,” Sci. Rep., 3, p. 1025.
Yu, S. C. , Wang, C. , Sun, C. , and Chen, W. , 2014, “ Topology Optimization for Light-Trapping Structure in Solar Cells,” Struct. Multidiscip. Optim., 50(3), pp. 367–382. [CrossRef]
Bendsoe, M. P. , and Sigmund, O. , 2003, “ Topology Optimization,” Theory, Methods, and Applications, 1st ed., Springer Verlag, New York.
Imboden, M. , and Bishop, D. , 2014, “ Top-Down Nanomanufacturing,” Phys. Today, 67(12), pp. 45–50. [CrossRef]
National Nanotechnology Initiative, 2017, “ Manufacturing at Nanoscale,” United States National Nanotechnology Initiative, Washington, DC, accessed May 5, 2017, https://www.nano.gov/nanotech-101/what/manufacturing
Walheim, S. , Schaffer, E. , Mlynek, J. , and Steiner, U. , 1999, “ Nanophase-Separated Polymer Films as High-Performance Antireflection Coatings,” Science, 283(5401), pp. 520–522. [CrossRef] [PubMed]
Huntington, M. D. , Engel, C. J. , Hryn, A. J. , and Odom, T. W. , 2013, “ Polymer Nanowrinkles With Continuously Tunable Wavelengths,” ACS Appl. Mater. Interfaces, 5(13), pp. 6438–6442. [CrossRef] [PubMed]
Dufresne, E. R. , Noh, H. , Saranathan, V. , Mochrie, S. G. J. , Cao, H. , and Prum, R. O. , 2009, “ Self-Assembly of Amorphous Biophotonic Nanostructures by Phase Separation,” Soft Matter, 5(9), pp. 1792–1795. [CrossRef]
Vukusic, P. , Hallam, B. , and Noyes, J. , 2007, “ Brilliant Whiteness in Ultrathin Beetle Scales,” Science, 315(5810), p. 348. [CrossRef] [PubMed]
Dong, B. Q. , Liu, X. H. , Zhan, T. R. , Jiang, L. P. , Yin, H. W. , Liu, F. , and Zi, J. , 2010, “ Structural Coloration and Photonic Pseudogap in Natural Random Close-Packing Photonic Structures,” Opt. Express, 18(14), pp. 14430–14438. [CrossRef] [PubMed]
Dong, B. Q. , Zhan, T. R. , Liu, X. H. , Jiang, L. P. , Liu, F. , Hu, X. H. , and Zi, J. , 2011 “ Optical Response of a Disordered Bicontinuous Macroporous Structure in the Longhorn Beetle Sphingnotus Mirabilis,” Phys. Rev. E, 84(1), p. 011915.
Prum, R. O. , Dufresne, E. R. , Quinn, T. , and Waters, K. , 2009, “ Development of Colour-Producing Beta-Keratin Nanostructures in Avian Feather Barbs,” J. R. Soc. Interface, 6, pp. S253–S265. [CrossRef] [PubMed]
Zhang, Y. F. , Dong, B. Q. , Chen, A. , Liu, X. H. , Shi, L. , and Zi, J. , 2015, “ Using Cuttlefish Ink as an Additive to Produce Non-Iridescent Structural Colors of High Color Visibility,” Adv. Mater., 27(32), pp. 4719–4724. [CrossRef] [PubMed]
Lee, W. K. , Engel, C. J. , Huntington, M. D. , Hu, J. T. , and Odom, T. W. , 2015, “ Controlled Three-Dimensional Hierarchical Structuring by Memory-Based, Sequential Wrinkling,” Nano Lett., 15(8), pp. 5624–5629. [CrossRef] [PubMed]
Lee, W.-K. , Jung, W.-B. , Nagel, S. R. , and Odom, T. W. , 2016, “ Stretchable Superhydrophobicity From Monolithic, Three-Dimensional Hierarchical Wrinkles,” Nano Lett., 16(6), pp. 3774–3779. [CrossRef] [PubMed]
Martins, E. R. , Li, J. T. , Liu, Y. K. , Depauw, V. , Chen, Z. X. , Zhou, J. Y. , and Krauss, T. F. , 2013, “ Deterministic Quasi-Random Nanostructures for Photon Control,” Nat. Commun., 4, p. 2665. [CrossRef] [PubMed]
Wiersma, D. S. , 2013, “ Disordered Photonics,” Nat. Photonics, 7(3), pp. 188–196. [CrossRef]
Swiler, L. P. , Hough, P. D. , Qian, P. , Xu, X. , Storlie, C. , and Lee, H. , 2014, “ Surrogate Models for Mixed Discrete-Continuous Variables,” Constraint Programming and Decision Making, Springer, Cham, Switzerland, pp. 181–202.
Xu, H. , Li, Y. , Brinson, C. , and Chen, W. , 2014, “ A Descriptor-Based Design Methodology for Developing Heterogeneous Microstructural Materials System,” ASME J. Mech. Des., 136(5), p. 051007. [CrossRef]
Liu, Y. , Greene, M. S. , Chen, W. , Dikin, D. A. , and Liu, W. K. , 2013, “ Computational Microstructure Characterization and Reconstruction for Stochastic Multiscale Material Design,” Comput. Aided Des., 45(1), pp. 65–76. [CrossRef]
Xu, H. , Liu, R. , Choudhary, A. , and Chen, W. , 2015, “ A Machine Learning-Based Design Representation Method for Designing Heterogeneous Microstructures,” ASME J. Mech. Des., 137(5), p. 051403. [CrossRef]
Zhang, Y. , Apley, D. W. , and Chen, W. , 2015, “ A Structural Equation Modeling Based Approach for Identifying Key Descriptors in Microstructural Materials Design,” ASME Paper No. DETC2015-47473.
Torquato, S. , 2002, “ Statistical Description of Microstructures,” Annu. Rev. Mater. Res., 32(1), pp. 77–111. [CrossRef]
Fullwood, D. T. , Niezgoda, S. R. , and Kalidindi, S. R. , 2008, “ Microstructure Reconstructions From 2-Point Statistics Using Phase-Recovery Algorithms,” Acta Mater., 56(5), pp. 942–948. [CrossRef]
Chatfield, C. , 2016, The Analysis of Time Series: An Introduction, CRC Press, Boca Raton, FL, p. 113.
Cahn, J. W. , 1965, “ Phase Separation by Spinodal Decomposition in Isotropic Systems,” J. Chem. Phys., 42(1), p. 93. [CrossRef]
Abrahamsen, P. , 1997, “ A Review of Gaussian Random Fields and Correlation Functions,” Norsk Regnesentral/Norwegian Computing Center, Oslo, Norway.
Berk, N. F. , 1987, “ Scattering Properties of a Model Bicontinuous Structure With a Well Defined Length Scale,” Phys. Rev. Lett., 58(25), pp. 2718–2721. [CrossRef] [PubMed]
Feng, J. W. , Li, C. F. , Cen, S. , and Owen, D. R. J. , 2014, “ Statistical Reconstruction of Two-Phase Random Media,” Comput. Struct., 137, pp. 78–92. [CrossRef]
Shields, M. D. , Deodatis, G. , and Bocchini, P. , 2011, “ A Simple and Efficient Methodology to Approximate a General Non-Gaussian Stationary Stochastic Process by a Translation Process,” Probab. Eng. Mech., 26(4), pp. 511–519. [CrossRef]
Koutsourelakis, P. S. , and Deodatis, G. , 2006, “ Simulation of Multidimensional Binary Random Fields With Application to Modeling of Two-Phase Random Media,” ASCE J. Eng. Mech., 132(6), pp. 619–631. [CrossRef]
Shields, M. D. , and Deodatis, G. , 2013, “ A Simple and Efficient Methodology to Approximate a General Non-Gaussian Stationary Stochastic Vector Process by a Translation Process With Applications in Wind Velocity Simulation,” Probab. Eng. Mech., 31, pp. 19–29. [CrossRef]
Shields, M. D. , Bocchini, P. , and Deodatis, G. , 2016, “ Discussion of Feng et al. (2014), ‘Statistical Reconstruction of Two-Phase Random Media’ [Comput. Struct. 137(2014) 78–92],” Comput. Struct., 163, pp. 83–85. [CrossRef]
Conley, G. M. , Burresi, M. , Pratesi, F. , Vynck, K. , and Wiersma, D. S. , 2014, “ Light Transport and Localization in Two-Dimensional Correlated Disorder,” Phys. Rev. Lett., 112(14), p. 143901. [CrossRef] [PubMed]
Green, M. A. , 2007, “ Thin-Film Solar Cells: Review of Materials, Technologies and Commercial Status,” J. Mater. Sci. Mater. Electron., 18(Supplement 1), pp. S15–S19. [CrossRef]
Li, L. F. , 1997, “ New Formulation of the Fourier Modal Method for Crossed Surface-Relief Gratings,” J. Opt. Soc. Am. A Opt. Image Sci. Vision., 14(10), pp. 2758–2767. [CrossRef]
Moharam, M. G. , Pommet, D. A. , Grann, E. B. , and Gaylord, T. K. , 1995, “ Stable Implementation of the Rigorous Coupled-Wave Analysis for Surface-Relief Gratings—Enhanced Transmittance Matrix Approach,” J. Opt. Soc. Am. A Opt. Image Sci. Vision, 12(5), pp. 1077–1086. [CrossRef]
Goldberg, D. E. , 1989, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley Professional, Boston, MA.
Eiben, A. E. , and Smith, J. , 2015, “ From Evolutionary Computation to the Evolution of Things,” Nature, 521(7553), pp. 476–482. [CrossRef] [PubMed]
Yu, Z. F. , Raman, A. , and Fan, S. H. , 2010, “ Fundamental Limit of Nanophotonic Light Trapping in Solar Cells,” Proc. Natl. Acad. Sci. U.S.A., 107(41), pp. 17491–17496. [CrossRef] [PubMed]
Vynck, K. , Burresi, M. , Riboli, F. , and Wiersma, D. S. , 2012, “ Photon Management in Two-Dimensional Disordered Media,” Nat. Mater., 11(12), pp. 1017–1022. [PubMed]
Burresi, M. , Pratesi, F. , Vynck, K. , Prasciolu, M. , Tormen, M. , and Wiersma, D. S. , 2013, “ Two-Dimensional Disorder for Broadband, Omnidirectional and Polarization-Insensitive Absorption,” Opt. Express, 21(5), pp. A268–A275. [CrossRef] [PubMed]
Lee, M. H. , Huntington, M. D. , Zhou, W. , Yang, J. C. , and Odom, T. W. , 2011, “ Programmable Soft Lithography: Solvent-Assisted Nanoscale Embossing,” Nano Lett., 11(2), pp. 311–315. [CrossRef] [PubMed]
Roberts, A. P. , and Teubner, M. , 1995, “ Transport Properties of Heterogeneous Materials Derived From Gaussian Random Fields—Bounds and Simulation,” Phys. Rev. E, 51(5), pp. 4141–4154. [CrossRef]
Zhang, Y. , Zhao, H. , Hassinger, I. , Brinson, L. C. , Schadler, L. S. , and Chen, W. , 2015, “ Microstructure Reconstruction and Structural Equation Modeling for Computational Design of Nanodielectrics,” Integr. Mater. Manuf. Innovation, 4(1), p. 14. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Optimized periodic nanostructure for light trapping in a thin-film solar cell [4,5]

Grahic Jump Location
Fig. 2

Biological and man-made quasi-random functional nanostructures [13,14,16,18]

Grahic Jump Location
Fig. 3

Comparison of spectral density functions and two-point correlation functions for representing quasi-random nanostructures

Grahic Jump Location
Fig. 4

Gaussian random field modeling for quasi-random nanostructure reconstruction based on spectral density function

Grahic Jump Location
Fig. 5

Demonstration of quasi-random nanostructure reconstruction based on different spectral density functions using Gaussian random field modeling

Grahic Jump Location
Fig. 6

Random close packing algorithm of disk particle for quasi-random nanostructure reconstruction based on spectral density function

Grahic Jump Location
Fig. 7

Demonstration of quasi-random nanostructure reconstruction based on different spectral density functions using particle packing algorithm

Grahic Jump Location
Fig. 8

Concurrent structure and processing-design methodology for quasi-random nanostructured material systems

Grahic Jump Location
Fig. 9

Computational design of quasi-random light-trapping nanostructure using spectral density function for single incident wavelength

Grahic Jump Location
Fig. 10

Results of computational design of quasi-random light-trapping nanostructure using spectral density function over broadband

Grahic Jump Location
Fig. 11

(a) A wrinkle-based quasi-random nanostructure with wrinkle wavelength of 180 nm and (b)–(d) the spectral density functions of three different wrinkle patterned nanostructures with wrinkle wavelengths of 180 nm, 450 nm, and 2000 nm

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In