0
Review Article

A Comprehensive Survey on Microgrippers Design: Mechanical Structure

[+] Author and Article Information
Matteo Verotti

Department of Mechanical and
Aerospace Engineering,
Sapienza University of Rome,
Rome 00184, Italy
e-mail: matteo.verotti@uniroma1.it

Alden Dochshanov

Department of Mechanical and
Aerospace Engineering,
Sapienza University of Rome,
Rome 00184, Italy
e-mail: alden.dochshanov@uniroma1.it

Nicola P. Belfiore

Department of Mechanical and
Aerospace Engineering,
Sapienza University of Rome,
Rome 00184, Italy
e-mail: belfiore@dima.uniroma1.it

1Corresponding author.

Contributed by the Mechanisms and Robotics Committee of ASME for publication in the JOURNAL OF MECHANICAL DESIGN. Manuscript received July 28, 2016; final manuscript received March 14, 2017; published online May 3, 2017. Assoc. Editor: Massimo Callegari.

J. Mech. Des 139(6), 060801 (May 03, 2017) (26 pages) Paper No: MD-16-1535; doi: 10.1115/1.4036351 History: Received July 28, 2016; Revised March 14, 2017

An atlas of 98 microgrippers that recently appeared in Literature is herein presented by using four different forms: (a) a restyled layout of the original mechanical structure, (b) its corresponding pseudorigid body model (PRBM), (c) its kinematic chain, and finally, (d) its related graph. Homogeneity in functional sketching (a) is assumed to be greatly helpful to understand how these grippers work and what are the most significant differences between them. Therefore, a unified and systematic set of aesthetics and proportionality criteria have been adopted. Analogously, unified criteria for obtaining pseudorigid (b), kinematic (c), and graph (d) representations have been also used, which made the atlas easy to be read and inspected. The distinction among lumped and distributed compliance has been also accepted to develop the structure of the atlas. A companion paper has been prepared to present a survey on the variety of operational strategies that are used in these microgrippers.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Castillo, J. , Dimaki, M. , and Svendsen, W. E. , 2009, “ Manipulation of Biological Samples Using Micro and Nano Techniques,” Integr. Biol., 1(1), pp. 30–42. [CrossRef]
Bargiel, S. , Rabenorosoa, K. , Clevy, C. , Gorecki, C. , and Lutz, P. , 2010, “ Towards Micro-Assembly of Hybrid Moems Components on a Reconfigurable Silicon Free-Space Micro-Optical Bench,” J. Micromech. Microeng., 20(4), p. 045012. [CrossRef]
Bargiel, S. , Rabenorosoa, K. , Mascaro, J.-P. , Clévy, C. , Gorecki, C. , and Lutz, P. , 2010, “ Technology Platform for Hybrid Integration of Moems on Reconfigurable Silicon Micro-Optical Table,” Procedia Eng., 5, pp. 428–431. [CrossRef]
Brehm-Stecher, B. F. , and Johnson, E. A. , 2004, “ Single-Cell Microbiology: Tools, Technologies, and Applications,” Microbiol. Mol. Biol. Rev., 68(3), pp. 538–559. [CrossRef] [PubMed]
Altschuler, S. J. , and Wu, L. F. , 2010, “ Cellular Heterogeneity: Do Differences Make a Difference?,” Cell, 141(4), pp. 559–563. [CrossRef] [PubMed]
Malter, H. , 2016, “ Micromanipulation in Assisted Reproductive Technology,” Reprod. BioMed. Online, 32(4), pp. 339–347. [CrossRef] [PubMed]
McAllister, D. V. , Allen, M. G. , and Prausnitz, M. R. , 2000, “ Microfabricated Microneedles for Gene and Drug Delivery,” Annu. Rev. Biomed. Eng., 2(1), pp. 289–313. [CrossRef] [PubMed]
Kimura, Y. , and Yanagimachi, R. , 1995, “ Intracytoplasmic Sperm Injection in the Mouse,” Biol. Reprod., 52(4), pp. 709–720. [CrossRef] [PubMed]
Garcés-Schröder, M. , Leester-Schädel, M. , Schulz, M. , Böl, M. , and Dietzel, A. , 2015, “ Micro-Gripper: A New Concept for a Monolithic Single-Cell Manipulation Device,” Sens. Actuators, A, 236, pp. 130–139. [CrossRef]
Ingber, D. E. , 2006, “ Cellular Mechanotransduction: Putting All the Pieces Together Again,” FASEB J., 20(7), pp. 811–827. [CrossRef] [PubMed]
Moeendarbary, E. , and Harris, A. R. , 2014, “ Cell Mechanics: Principles, Practices, and Prospects,” Wiley Interdiscip. Rev.: Syst. Biol. Med., 6(5), pp. 371–388. [CrossRef] [PubMed]
Park, Y. , Best, C. A. , Badizadegan, K. , Dasari, R. R. , Feld, M. S. , Kuriabova, T. , Henle, M. L. , Levine, A. J. , and Popescu, G. , 2010, “ Measurement of Red Blood Cell Mechanics During Morphological Changes,” Proc. Natl. Acad. Sci., 107(15), pp. 6731–6736. [CrossRef]
Arai, F. , Andou, D. , Nonoda, Y. , Fukuda, T. , Iwata, H. , and Itoigawa, K. , 1998, “ Integrated Microendeffector for Micromanipulation,” IEEE/ASME Trans. Mechatron., 3(1), pp. 17–23. [CrossRef]
Carrozza, M. C. , Eisinberg, A. , Menciassi, A. , Campolo, D. , Micera, S. , and Dario, P. , 2000, “ Towards a Force-Controlled Microgripper for Assembling Biomedical Microdevices,” J. Micromech. Microeng., 10(2), p. 271. [CrossRef]
Pérez, R. , Agnus, J. , Clévy, C. , Hubert, A. , and Chaillet, N. , 2005, “ Modeling, Fabrication, and Validation of a High-Performance 2-DoF Piezoactuator for Micromanipulation,” IEEE/ASME Trans. Mechatron., 10(2), pp. 161–171. [CrossRef]
Zhou, L. , Kahn, J. , and Pister, K. , 2003, “ Corner-Cube Retroreflectors Based on Structure-Assisted Assembly for Free-Space Optical Communication,” J. Microelectromech. Syst., 12(3), pp. 233–242. [CrossRef]
Dechev, N. , Cleghorn, W. , and Mills, J. , 2004, “ Microassembly of 3-D Microstructures Using a Compliant, Passive Microgripper,” J. Microelectromech. Syst., 13(2), pp. 176–189. [CrossRef]
Das, A. N. , Sin, J. , Popa, D. O. , and Stephanou, H. E. , 2008, “ On the Precision Alignment and Hybrid Assembly Aspects in Manufacturing of a Microspectrometer,” IEEE International Conference on Automation Science and Engineering (CASE), Arlington, VA, Aug. 23–26, pp. 959–966.
Cecil, J. , Vasquez, D. , and Powell, D. , 2005, “ A Review of Gripping and Manipulation Techniques for Micro-Assembly Applications,” Int. J. Prod. Res., 43(4), pp. 819–828. [CrossRef]
Cecil, J. , Powell, D. , and Vasquez, D. , 2007, “ Assembly and Manipulation of Micro Devices—a State of the Art Survey,” Rob. Comput.-Integr. Manuf., 23(5), pp. 580–588. [CrossRef]
Rabenorosoa, K. , Clevy, C. , Chen, Q. , and Lutz, P. , 2012, “ Study of Forces During Microassembly Tasks Using Two-Sensing-Fingers Grippers,” IEEE/ASME Trans. Mechatron., 17(5), pp. 811–821. [CrossRef]
Fantoni, G. , and Porta, M. , 2008, “ A Critical Review of Releasing Strategies in Microparts Handling,” Micro-Assembly Technologies and Applications (IFIP—International Federation for Information Processing, Vol. 260), S. Ratchev and S. Koelemeijer , eds., Springer US, Boston, MA, pp. 223–234.
Denisyuk, A. , Krasavin, A. , Komissarenko, F. , and Mukhin, I. , 2014, “ Mechanical, Electrostatic, and Electromagnetic Mechanical, Electrostatic, and Electromagnetic Manipulation of Microobjects and Nanoobjects in Electron Microscopes,” Adv. Imaging Electron Phys., 186, pp. 101–140.
Wei, Y. , and Xu, Q. , 2015, “ An Overview of Micro-Force Sensing Techniques,” Sens. Actuators, A, 234, pp. 359–374. [CrossRef]
Boudaoud, M. , and Régnier, S. , 2014, “ An Overview on Gripping Force Measurement at the Micro and Nano-Scales Using Two-Fingered Microrobotic Systems,” Int. J. Adv. Rob. Syst., 11(1), pp. 1–15. [CrossRef]
Mekid, S. , Bashmal, S. , and Ouakad, H. M. , 2016, “ Nanoscale Manipulators: Review of Conceptual Designs Through Recent Patents,” Recent Pat. Nanotechnol., 10(1), pp. 44–58. [CrossRef] [PubMed]
Jia, Y. , and Xu, Q. , 2013, “ MEMS Microgripper Actuators and Sensors: The State-of-the-Art Survey,” Recent Pat. Mech. Eng., 6(2), pp. 132–142. [CrossRef]
Nikoobin, A. , and Niaki, M. H. , 2012, “ Deriving and Analyzing the Effective Parameters in Microgrippers Performance,” Sci. Iran., 19(6), pp. 1554–1563. [CrossRef]
Howell, L. , and Midha, A. , 1995, “ Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms,” ASME J. Mech. Des., 117(1), pp. 156–165. [CrossRef]
Lyon, S. , Erickson, P. , Evans, M. , and Howell, L. , 1999, “ Prediction of the First Modal Frequency of Compliant Mechanisms Using the Pseudo-Rigid-Body Model,” ASME J. Mech. Des., 121(2), pp. 309–313. [CrossRef]
Edwards, B. , Jensen, B. , and Howell, L. , 2001, “ A Pseudo-Rigid-Body Model for Initially-Curved Pinned-Pinned Segments Used in Compliant Mechanisms,” ASME J. Mech. Des., 123(3), pp. 464–468. [CrossRef]
Jensen, B. , and Howell, L. , 2003, “ Identification of Compliant Pseudo-Rigid-Body Four-Link Mechanism Configurations Resulting in Bistable Behavior,” ASME J. Mech. Des., 125(4), pp. 701–708. [CrossRef]
Howell, L. , Dibiasio, C. , Cullinan, M. , Panas, R. , and Culpepper, M. , 2010, “ A Pseudo-Rigid-Body Model for Large Deflections of Fixed-Clamped Carbon Nanotubes,” ASME J. Mech. Rob., 2(3), p. 034501. [CrossRef]
Halverson, P. , Bowden, A. , and Howell, L. , 2011, “ A Pseudo-Rigid-Body Model of the Human Spine to Predict Implant-Induced Changes on Motion,” ASME J. Mech. Rob., 3(4), p. 041008. [CrossRef]
Grübler, M. F. , 1917, Getriebelehre: Eine Theorie des Zwanglaufes und der Ebenen Mechanismen, Springer-Verlag, Berlin.
Dochshanov, A. , Verotti, M. , and Belfiore, N. P. , 2016, “ A Comprehensive Survey on Microgrippers Design: Operational Strategy,” ASME J. Mech. Des. (in press).
Belfiore, N. P. , 2000, “ Distributed Databases for the Development of Mechanisms Topology,” Mech. Mach. Theory, 35(12), pp. 1727–1744. [CrossRef]
Belfiore, N. P. , 2000, “ Brief Note on the Concept of Planarity for Kinematic Chains,” Mech. Mach. Theory, 35(12), pp. 1745–1750. [CrossRef]
Belfiore, N. P. , 1993, “ Atlas of Remote Actuated Bevel Gear Wrist Mechanisms of up to Nine Links,” Int. J. Rob. Res., 12(5), pp. 448–459. [CrossRef]
Belfiore, N. P. , and Pennestrì, E. , 1997, “ An Atlas of Linkage-Type Robotic Grippers,” Mech. Mach. Theory, 32(7), pp. 811–833. [CrossRef]
Pennestrí, E. , and Belfiore, N. , 2015, “ On Crossley's Contribution to the Development of Graph Based Algorithms for the Analysis of Mechanisms and Gear Trains,” Mech. Mach. Theory, 89, pp. 92–106. [CrossRef]
Tsai, Y.-C. , Lei, S. H. , and Sudin, H. , 2005, “ Design and Analysis of Planar Compliant Microgripper Based on Kinematic Approach,” J. Micromech. Microeng., 15(1), p. 143. [CrossRef]
Sun, X. , Chen, W. , Fatikow, S. , Tian, Y. , Zhou, R. , Zhang, J. , and Mikczinski, M. , 2015, “ A Novel Piezo-Driven Microgripper With a Large Jaw Displacement,” Microsyst. Technol., 21(4), pp. 931–942. [CrossRef]
Bellouard, Y. , 2010, Microrobotics: Methods and Applications, CRC Press, Boca Raton, FL.
Bazaz, S. A. , Khan, F. , and Shakoor, R. I. , 2011, “ Design, Simulation and Testing of Electrostatic SOI MUMPs Based Microgripper Integrated With Capacitive Contact Sensor,” Sens. Actuators, A, 167(1), pp. 44–53. [CrossRef]
Beyeler, F. , Neild, A. , Oberti, S. , Bell, D. J. , Sun, Y. , Dual, J. , and Nelson, B. J. , 2007, “ Monolithically Fabricated Microgripper With Integrated Force Sensor for Manipulating Microobjects and Biological Cells Aligned in an Ultrasonic Field,” J. Microelectromech. Syst., 16(1), pp. 7–15. [CrossRef]
Verotti, M. , 2016, “ Analysis of the Center of Rotation in Primitive Flexures: Uniform Cantilever Beams With Constant Curvature,” Mech. Mach. Theory, 97, pp. 29–50. [CrossRef]
Belfiore, N. , and Simeone, P. , 2013, “ Inverse Kinetostatic Analysis of Compliant Four-Bar Linkages,” Mech. Mach. Theory, 69, pp. 350–372. [CrossRef]
Verotti, M. , Crescenzi, R. , Balucani, M. , and Belfiore, N. , 2015, “ MEMS-Based Conjugate Surfaces Flexure Hinge,” ASME J. Mech. Des., 137(1), p. 012301. [CrossRef]
Balucani, M. , Belfiore, N. P. , Crescenzi, R. , and Verotti, M. , 2011, “ The Development of a MEMS/NEMS-Based 3 D.O.F. Compliant Micro Robot,” IEEE 19th International Workshop on Robotics in Alpe-Adria-Danube Region (RAAD), Balatonfüred, Hungary, June 24–26, 12(1), pp. 3–10.
Belfiore, N. P. , Verotti, M. , Crescenzi, R. , and Balucani, M. , 2013, “ Design, Optimization and Construction of MEMS-Based Micro Grippers for Cell Manipulation,” IEEE International Conference on System Science and Engineering (ICSSE 2013), Budapest, Hungary, July 4–6, pp. 105–110.
Belfiore, N. P. , Broggiato, G. B. , Verotti, M. , Balucani, M. , Crescenzi, R. , Bagolini, A. , Bellutti, P. , and Boscardin, M. , 2015, “ Simulation and Construction of a MEMS CSFH Based Microgripper,” Int. J. Mech. Control, 16(1), pp. 21–30.
Cecchi, R. , Verotti, M. , Capata, R. , Dochshanov, A. , Broggiato, G. , Crescenzi, R. , Balucani, M. , Natali, S. , Razzano, G. , Lucchese, F. , Bagolini, A. , Bellutti, P. , Sciubba, E. , and Belfiore, N. P. , 2015, “ Development of Micro-Grippers for Tissue and Cell Manipulation With Direct Morphological Comparison,” Micromachines, 6(11), pp. 1710–1728. [CrossRef]
Yong, Y. K. , Lu, T.-F. , and Handley, D. C. , 2008, “ Review of Circular Flexure Hinge Design Equations and Derivation of Empirical Formulations,” Precis. Eng., 32(2), pp. 63–70. [CrossRef]
Lobontiu, N. , Garcia, E. , Goldfarb, M. , and Paine, J. S. , 2001, “ Corner-Filleted Flexure Hinges,” ASME J. Mech. Des., 123(3), pp. 346–352. [CrossRef]
Lobontiu, N. , Paine, J. S. , O'Malley, E. , and Samuelson, M. , 2002, “ Parabolic and Hyperbolic Flexure Hinges: Flexibility, Motion Precision and Stress Characterization Based on Compliance Closed-Form Equations,” Precis. Eng., 26(2), pp. 183–192. [CrossRef]
Smith, S. T. , Badami, V. G. , Dale, J. S. , and Xu, Y. , 1997, “ Elliptical Flexure Hinges,” Rev. Sci. Instrum., 68(3), pp. 1474–1483. [CrossRef]
Chen, G.-M. , Jia, J.-Y. , and Li, Z.-W. , 2005, “ On Hybrid Flexure Hinges,” IEEE Networking, Sensing and Control, pp. 700–704.
Lee, V. , Gibert, J. , and Ziegert, J. , 2014, “ Hybrid Bi-Directional Flexure Joint,” Precis. Eng., 38(2), pp. 270–278. [CrossRef]
Trease, B. T. , Moon, Y. , and Kota, S. , 2005, “ Design of Large-Displacement Compliant Joints,” ASME J. Mech. Des., 127(4), pp. 788–798. [CrossRef]
Cannon, J. R. , and Howell, L. L. , 2005, “ A Compliant Contact-Aided Revolute Joint,” Mech. Mach. Theory, 40(11), pp. 1273–1293. [CrossRef]
Moon, Y.-M. , 2007, “ Bio-Mimetic Design of Finger Mechanism With Contact Aided Compliant Mechanism,” Mech. Mach. Theory, 42(5), pp. 600–611. [CrossRef]
Pei, X. , Yu, J. , Zong, G. , Bi, S. , and Su, H. , 2009, “ The Modeling of Cartwheel Flexural Hinges,” Mech. Mach. Theory, 44(10), pp. 1900–1909. [CrossRef]
Henein, S. , Spanoudakis, P. , Droz, S. , Myklebust, L. , and Onillon, E. , 2003, “ Flexure Pivot for Aerospace Mechanisms,” Tenth European Space Mechanisms and Tribology Symposium (ESMATS), San Sebastián, Spain, Sept. 24–26, pp. 285–288.
Pei, X. , and Yu, J. , 2011, “ ADLIF: A New Large-Displacement Beam-Based Flexure Joint,” Mech. Sci., 2(2), pp. 183–188. [CrossRef]
Belfiore, N. , Verotti, M. , Di Giamberardino, P. , and Rudas, I. , 2012, “ Active Joint Stiffness Regulation to Achieve Isotropic Compliance in the Euclidean Space,” ASME J. Mech. Rob., 4(4), p. 041010. [CrossRef]
Verotti, M. , and Belfiore, N. P. , 2016, “ Isotropic Compliance in E(3): Feasibility and Workspace Mapping,” ASME J. Mech. Rob., 8(6), p. 061005. [CrossRef]
Verotti, M. , Masarati, P. , Morandini, M. , and Belfiore, N. , 2016, “ Isotropic Compliance in the Special Euclidean Group SE(3),” Mech. Mach. Theory, 98, pp. 263–281. [CrossRef]
Belfiore, N. , Di Giamberardino, P. , Rudas, I. , and Verotti, M. , 2011, “ Isotropy in any RR Planar Dyad Under Active Joint Stiffness Regulation,” IEEE 19th International Workshop on Robotics in Alpe-Adria-Danube Region (RAAD), Balatonfüred, Hungary, June 24–26, pp. 75–81.
Verotti, M. , Dochshanov, A. , and Belfiore, N. , 2016, “ Compliance Synthesis of CSFH MEMS-Based Microgrippers,” ASME J. Mech. Des., 139(2), p. 022301. [CrossRef]
Belfiore, N. P. , and Pennestrì, E. , 1994, “ Automatic Sketching of Planar Kinematic Chains,” Mech. Mach. Theory, 29(1), pp. 177–193. [CrossRef]
Ai, W. , and Xu, Q. , 2014, “ New Structural Design of a Compliant Gripper Based on the Scott-Russell Mechanism,” Int. J. Adv. Rob. Syst., 11(192), pp. 1–10.
Sun, X. , Chen, W. , Tian, Y. , Fatikow, S. , Zhou, R. , Zhang, J. , and Mikczinski, M. , 2013, “ A Novel Flexure-Based Microgripper With Double Amplification Mechanisms for Micro/Nano Manipulation,” Rev. Sci. Instrum., 84(8), p. 085002. [CrossRef] [PubMed]
Zhang, D. , Zhang, Z. , Gao, Q. , Xu, D. , and Liu, S. , 2015, “ Development of a Monolithic Compliant SPCA-Driven Micro-Gripper,” Mechatronics, 25, pp. 37–43. [CrossRef]
Lu, K. , Zhang, J. , Chen, W. , Jiang, J. , and Chen, W. , 2014, “ A Monolithic Microgripper With High Efficiency and High Accuracy for Optical Fiber Assembly,” IEEE Ninth Conference on Industrial Electronics and Applications (ICIEA), Hangzhou, China, June 9–11, pp. 1942–1947.
Wang, D. , Yang, Q. , and Dong, H. , 2013, “ A Monolithic Compliant Piezoelectric-Driven Microgripper: Design, Modeling, and Testing,” IEEE/ASME Trans. Mechatron., 18(1), pp. 138–147. [CrossRef]
Zubir, M. N. M. , Shirinzadeh, B. , and Tian, Y. , 2009, “ A New Design of Piezoelectric Driven Compliant-Based Microgripper for Micromanipulation,” Mech. Mach. Theory, 44(12), pp. 2248–2264. [CrossRef]
Xu, Q. , 2012, “ Mechanism Design and Analysis of a Novel 2-DOF Compliant Modular Microgripper,” Seventh IEEE Conference on Industrial Electronics and Applications (ICIEA), Singapore, July 18–20, pp. 1966–1971.
Xu, Q. , 2013, “ A New Compliant Microgripper With Integrated Position and Force Sensing,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Wollongong, Australia, July 9–12, pp. 591–596.
Kim, D.-H. , Lee, M. G. , Kim, B. , and Sun, Y. , 2005, “ A Superelastic Alloy Microgripper With Embedded Electromagnetic Actuators and Piezoelectric Force Sensors: A Numerical and Experimental Study,” Smart Mater. Struct., 14(6), p. 1265. [CrossRef]
Zubir, M. N. M. , and Shirinzadeh, B. , 2009, “ Development of a High Precision Flexure-Based Microgripper,” Precis. Eng., 33(4), pp. 362–370. [CrossRef]
Cho, Y. S. , Pak, Y. , Han, C. S. , and Ha, S. K. , 2000, “ Five-Port Equivalent Electric Circuit of Piezoelectric Bimorph Beam,” Sens. Actuators, A, 84(1–2), pp. 140–148. [CrossRef]
Takagi, K. , Li, J.-F. , Yokoyama, S. , Watanabe, R. , Almajid, A. , and Taya, M. , 2002, “ Design and Fabrication of Functionally Graded PZT/PT Piezoelectric Bimorph Actuator,” Sci. Technol. Adv. Mater., 3(2), pp. 217–224. [CrossRef]
Taya, M. , Almajid, A. A. , Dunn, M. , and Takahashi, H. , 2003, “ Design of Bimorph Piezo-Composite Actuators With Functionally Graded Microstructure,” Sens. Actuators, A, 107(3), pp. 248–260. [CrossRef]
Duan, Z. , and Wang, Q. , 2005, “ Development of a Novel High Precision Piezoelectric Linear Stepper Actuator,” Sens. Actuators, A, 118(2), pp. 285–291. [CrossRef]
Shi, X. , Chen, W. , Zhang, J. , and Chen, W. , 2013, “ Design, Modeling, and Simulation of a 2-DOF Microgripper for Grasping and Rotating of Optical Fibers,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Wollongong, Australia, July 9–12, pp. 1597–1602.
Cao, Q. , Lu, Q. , Xi, J. , Yan, J. , and Chu, C. , 2011, “ Modeling and Performance Analysis of Giant Magnetostrictive Microgripper With Flexure Hinge,” Computer and Computing Technologies in Agriculture IV (IFIP Advances in Information and Communication Technology, Vol. 347), D. Li, Y. Liu, and Y. Chen , eds., Springer, Berlin, pp. 237–245.
Kyung, J. , Ko, B. , Ha, Y. , and Chung, G. , 2008, “ Design of a Microgripper for Micromanipulation of Microcomponents Using SMA Wires and Flexible Hinges,” Sens. Actuators, A, 141(1), pp. 144–150. [CrossRef]
Ballandras, S. , Basrour, S. , Robert, L. , Megtert, S. , Blind, P. , Rouillay, M. , Bernéde, P. , and Daniau, W. , 1997, “ Microgrippers Fabricated by the LIGA Technique,” Sens. Actuators, A, 58(3), pp. 265–272. [CrossRef]
Chronis, N. , and Lee, L. , 2004, “ Polymer MEMS-Based Microgripper for Single Cell Manipulation,” 17th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Maastricht, The Netherlands, Jan. 25–29, pp. 17–20.
Chronis, N. , and Lee, L. P. , 2005, “ Electrothermally Activated SU-8 Microgripper for Single Cell Manipulation in Solution,” J. Microelectromech. Syst., 14(4), pp. 857–863. [CrossRef]
Jayaram, K. , and Joshi, S. S. , 2010, “ Development of a Flexure-Based, Force-Sensing Microgripper for Micro-Object Manipulation,” J. Micromech. Microeng., 20(1), p. 015001. [CrossRef]
Chang, R. , and Chen, C. , 2007, “ Using Microgripper for Adhesive Bonding in Automatic Microassembly System,” International Conference on Mechatronics and Automation (ICMA 2007), Harbin, China, Aug. 5–8, pp. 440–445.
Chang, R.-J. , and Cheng, C.-Y. , 2009, “ Vision-Based Compliant-Joint Polymer Force Sensor Integrated With Microgripper for Measuring Gripping Force,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2009), Singapore, July 14–17, pp. 18–23.
Alogla, A. , Scanlan, P. , Shu, W. , and Reuben, R. , 2012, “ A Scalable Syringe-Actuated Microgripper for Biological Manipulation,” Procedia Eng., 47, pp. 882–885. [CrossRef]
Menciassi, A. , Eisinberg, A. , Mazzoni, M. , and Dario, P. , 2002, “ A Sensorized mu;Electro Discharge Machined Superelastic Alloy Microgripper for Micromanipulation: Simulation and Characterization,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Lausanne, Switzerland, Sept. 30–Oct. 4, Vol. 2, pp. 1591–1595.
Nah, S. , and Zhong, Z. , 2007, “ A Microgripper Using Piezoelectric Actuation for Micro-Object Manipulation,” Sens. Actuators, A, 133(1), pp. 218–224. [CrossRef]
Millet, O. , Bernardoni, P. , Régnier, S. , Bidaud, P. , Tsitsiris, E. , Collard, D. , and Buchaillot, L. , 2004, “ Electrostatic Actuated Micro Gripper Using an Amplification Mechanism,” Sens. Actuators, A, 114(2–3), pp. 371–378. [CrossRef]
Keller, C. G. , and Howe, R. T. , 1997, “ Hexsil Tweezers for Teleoperated Micro-Assembly,” IEEE Tenth Annual International Workshop on Micro Electro Mechanical Systems (MEMS'97), Nagoya, Japan, Jan. 26–30, pp. 72–77.
Hoxhold, B. , and Büttgenbach, S. , 2008, “ Batch Fabrication of Micro Grippers With Integrated Actuators,” Microsyst. Technol., 14(12), pp. 1917–1924. [CrossRef]
Xu, Q. , 2015, “ Design and Development of a Novel Compliant Gripper With Integrated Position and Grasping/Interaction Force Sensing,” IEEE Trans. Autom. Sci. Eng., PP(99), pp. 1–14. [CrossRef]
Xu, Q. , 2015, “ Design, Fabrication, and Testing of an Mems Microgripper With Dual-Axis Force Sensor,” IEEE Sens. J., 15(10), pp. 6017–6026. [CrossRef]
Chu, J. , Zhang, R. , and Chen, Z. , 2011, “ A Novel SU-8 Electrothermal Microgripper Based on the Type Synthesis of the Kinematic Chain Method and the Stiffness Matrix Method,” J. Micromech. Microeng., 21(5), p. 054030. [CrossRef]
Zhang, R. , Chu, J. , Wang, H. , and Chen, Z. , 2013, “ A Multipurpose Electrothermal Microgripper for Biological Micro-Manipulation,” Microsyst. Technol., 19(1), pp. 89–97. [CrossRef]
Bharanidaran, R. , and Ramesh, T. , 2014, “ Numerical Simulation and Experimental Investigation of a Topologically Optimized Compliant Microgripper,” Sens. Actuators, A, 205, pp. 156–163. [CrossRef]
Stavrov, V. , Tomerov, E. , Hardalov, C. , Danchev, D. , Kostadinov, K. , Stavreva, G. , Apostolov, E. , Shulev, A. , Andonova, A. , and Al-Wahab, M. , 2010, “ Low Voltage Thermo-Mechanically Driven Monolithic Microgripper With Piezoresistive Feedback,” Precision Assembly Technologies and Systems (IFIP Advances in Information and Communication Technology, Vol. 315), S. Ratchev , ed., Springer, Berlin, pp. 207–214.
Ai, W. , and Xu, Q. , 2014, “ New Structure Design of a Flexure-Based Compliant Microgripper,” IEEE International Conference on Robotics and Biomimetics (ROBIO), Bali, Indonesia, Dec. 5–10, pp. 2588–2593.
Blideran, M. M. , Bertsche, G. , Henschel, W. , and Kern, D. P. , 2006, “ A Mechanically Actuated Silicon Microgripper for Handling Micro- and Nanoparticles,” Microelectron. Eng., 83(4–9), pp. 1382–1385. [CrossRef]
Blideran, M. M. , Fleischer, M. , Grauvogel, F. , Löffler, K. , Langer, M. G. , and Kern, D. P. , 2008, “ Real-Time Gripping Detection for a Mechanically Actuated Microgripper,” Microelectron. Eng., 85(5–6), pp. 1022–1026. [CrossRef]
Zeman, M. J. F. , Bordatchev, E. V. , and Knopf, G. K. , 2006, “ Design, Kinematic Modeling and Performance Testing of an Electro-Thermally Driven Microgripper for Micromanipulation Applications,” J. Micromech. Microeng., 16(8), p. 1540. [CrossRef]
Greminger, M. A. , Sezen, A. S. , and Nelson, B. J. , 2005, “ A Four Degree of Freedom MEMS Microgripper With Novel Bi-Directional Thermal Actuators,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2005), Edmonton, AB, Canada, Aug. 2–6, pp. 2814–2819.
Chang, R.-J., Shiu, C.-C., and Cheng, C.-Y., 2013, “ Self-Biased-SMA Drive PU Microgripper With Force Sensing in Visual Servo,” Int. J. Adv. Rob. Syst., 10(280), p. 280.
Fraser, J. , Hubbard, T. , and Kujath, M. , 2006, “ Theoretical and Experimental Analysis of an Off-Chip Microgripper,” Can. J. Electr. Comput. Eng., 31(2), pp. 77–84. [CrossRef]
Wu, Z. , and Li, Y. , 2014, “ Optimal Design and Comparative Analysis of a Novel Microgripper Based on Matrix Method,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Besançon, France, July 8–11, pp. 955–960.
Wu, Z. , and Li, Y. , 2014, “ Design, Modeling, and Analysis of a Novel Microgripper Based on Flexure Hinges,” Adv. Mech. Eng., 6, p. 47584.
Iamoni, S. , and Somà, A. , 2014, “ Design of an Electro-Thermally Actuated Cell Microgripper,” Microsyst. Technol., 20(4–5), pp. 869–877. [CrossRef]
Boudaoud, M. , Haddab, Y. , and Le Gorrec, Y. , 2010, “ Modelling of a MEMS-Based Microgripper: Application to Dexterous Micromanipulation,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan, Oct. 18–22, pp. 5634–5639.
Ivanova, K. , Ivanov, T. , Badar, A. , Volland, B. E. , Rangelow, I. W. , Andrijasevic, D. , Sümecz, F. , Fischer, S. , Spitzbart, M. , Brenner, W. , and Kostic, I. , 2006, “ Thermally Driven Microgripper as a Tool for Micro Assembly,” Microelectron. Eng., 83(4–9), pp. 1393–1395. [CrossRef]
Nguyen, N.-T. , Ho, S.-S. , and Low, C. L.-N. , 2004, “ A Polymeric Microgripper With Integrated Thermal Actuators,” J. Micromech. Microeng., 14(7), p. 969. [CrossRef]
Solano, B. , and Wood, D. , 2007, “ Design and Testing of a Polymeric Microgripper for Cell Manipulation,” Microelectron. Eng., 84(5–8), pp. 1219–1222. [CrossRef]
Vijayasai, A. P. , Sivakumar, G. , Mulsow, M. , Lacouture, S. , Holness, A. , and Dallas, T. E. , 2012, “ Haptic Controlled Three Degree-of-Freedom Microgripper System for Assembly of Detachable Surface-Micromachined MEMS,” Sens. Actuators, A, 179, pp. 328–336. [CrossRef]
Duc, T. C. , Lau, G. K. , Creemer, J. F. , and Sarro, P. M. , 2008, “ Electrothermal Microgripper With Large Jaw Displacement and Integrated Force Sensors,” IEEE 21st International Conference on Micro Electro Mechanical Systems (MEMS 2008), Tucson, AZ, Jan. 13–17, pp. 519–522.
Shivhare, P. , Uma, G. , and Umapathy, M. , 2016, “ Design Enhancement of a Chevron Electrothermally Actuated Microgripper for Improved Gripping Performance,” Microsyst. Technol., 22(11), pp. 2623–2631. [CrossRef]
Jia, Y. , and Xu, Q. , 2013, “ Design of a Monolithic Dual-Axis Electrostatic Actuation MEMS Microgripper With Capacitive Position/Force Sensors,” 13th IEEE Conference on Nanotechnology (IEEE-NANO), Beijing, China, Aug. 5–8, pp. 817–820.
Amjad, K. , Bazaz, S. , and Lai, Y. , 2008, “ Design of an Electrostatic MEMS Microgripper System Integrated With Force Sensor,” International Conference on Microelectronics (ICM 2008), Sharjah, United Arab Emirates, Dec. 14–17, pp. 236–239.
Carlson, K. , Andersen, K. N. , Eichhorn, V. , Petersen, D. H. , Mølhave, K. , Bu, I. Y. Y. , Teo, K. B. K. , Milne, W. I. , Fatikow, S. , and Bøggild, P. , 2007, “ A Carbon Nanofibre Scanning Probe Assembled Using an Electrothermal Microgripper,” Nanotechnology, 18(34), p. 345501. [CrossRef]
Chen, T. , Sun, L. , Chen, L. , Rong, W. , and Li, X. , 2010, “ A Hybrid-Type Electrostatically Driven Microgripper With an Integrated Vacuum Tool,” Sens. Actuators, A, 158(2), pp. 320–327. [CrossRef]
Khan, F. , Bazaz, S. , and Sohail, M. , 2010, “ Design, Implementation and Testing of Electrostatic SOI MUMPs Based Microgripper,” Microsyst. Technol., 16(11), pp. 1957–1965. [CrossRef]
Krishnan, S. , and Saggere, L. , 2012, “ Design and Development of a Novel Micro-Clasp Gripper for Micromanipulation of Complex-Shaped Objects,” Sens. Actuators, A, 176, pp. 110–123. [CrossRef]
Harouche, I. P. F. , and Shafai, C. , 2005, “ Simulation of Shaped Comb Drive as a Stepped Actuator for Microtweezers Application,” Sens. Actuators, A, 123–124, pp. 540–546. [CrossRef]
Ali, N. , Shakoor, R. , and Hassan, M. , 2011, “ Design, Modeling and Simulation of Electrothermally Actuated Microgripper With Integrated Capacitive Contact Sensor,” IEEE 14th International Multitopic Conference (INMIC), Karachi, Pakistan, Dec. 22–24, pp. 201–206.
Elbuken, C. , Gui, L. , Ren, C. L. , Yavuz, M. , and Khamesee, M. B. , 2008, “ Design and Analysis of a Polymeric Photo-Thermal Microactuator,” Sens. Actuators, A, 147(1), pp. 292–299. [CrossRef]
Kohl, M. , Just, E. , Pfleging, W. , and Miyazaki, S. , 2000, “ SMA Microgripper With Integrated Antagonism,” Sens. Actuators, A, 83(1–3), pp. 208–213. [CrossRef]
Kohl, M. , Krevet, B. , and Just, E. , 2002, “ SMA Microgripper System,” Sens. Actuators, A, 97–98, pp. 646–652. [CrossRef]
Chen, T. , Chen, L. , Sun, L. , Wang, J. , and Li, X. , 2008, “ A Sidewall Piezoresistive Force Sensor Used in a MEMS Gripper,” Intelligent Robotics and Applications (Lecture Notes in Computer Science), Vol. 5315, C. Xiong, H. Liu, Y. Huang, and Y. Xiong , eds., Springer, Berlin.
Chen, T. , Chen, L. , and Sun, L. , 2009, “ Piezoelectrically Driven Silicon Microgrippers Integrated With Sidewall Piezoresistive Sensor,” IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan, May 12–17, pp. 2989–2994.
Chen, T. , Chen, L. , Sun, L. , and Li, X. , 2009, “ Design and Fabrication of a Four-Arm-Structure MEMS Gripper,” IEEE Trans. Ind. Electron., 56(4), pp. 996–1004. [CrossRef]
Chen, T. , Chen, L. , Sun, L. , Rong, W. , and Yang, Q. , 2010, “ Micro Manipulation Based on Adhesion Control With Compound Vibration,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010), Taipei, Taiwan, 18–22, pp. 6137–6142.
Kim, D.-H. , Kim, B. , and Kang, H. , 2004, “ Development of a Piezoelectric Polymer-Based Sensorized Microgripper for Microassembly and Micromanipulation,” Microsyst. Technol., 10(4), pp. 275–280. [CrossRef]
Kim, D.-H. , Lee, M.-G. , Kim, B. , and Shim, J.-H. , 2004, “ A Superelastic Alloy Microgripper With Embedded Electromagnetic Actuators and Piezoelectric Sensors,” Proc. SPIE, 5604, pp. 230–237.
Park, J. , Kim, S. , Kim, D.-H. , Kim, B. , Kwon, S. J. , Park, J.-O. , and Lee, K.-I. , 2005, “ Identification and Control of a Sensorized Microgripper for Micromanipulation,” IEEE/ASME Trans. Mechatron., 10(5), pp. 601–606. [CrossRef]
Kim, K. , Liu, X. , Zhang, Y. , and Sun, Y. , 2008, “ Nanonewton Force-Controlled Manipulation of Biological Cells Using a Monolithic MEMS Microgripper With Two-Axis Force Feedback,” J. Micromech. Microeng., 18(5), p. 055013. [CrossRef]
Choi, H.-S. , Lee, D.-C. , Kim, S.-S. , and Han, C.-S. , 2005, “ The Development of a Microgripper With a Perturbation-Based Configuration Design Method,” J. Micromech. Microeng., 15(6), p. 1327. [CrossRef]
Choi, H. , Shin, D. , Ryuh, Y. , and Han, C. , 2011, “ Development of a Micro Manipulator Using a Microgripper and PZT Actuator for Microscopic Operations,” IEEE International Conference on Robotics and Biomimetics (ROBIO), Phucket, Thailand, Dec. 7–11, pp. 744–749.
Panepucci, R. R. , and Martinez, J. A. , 2008, “ Novel SU-8 Optical Waveguide Microgripper for Simultaneous Micromanipulation and Optical Detection,” J. Vac. Sci. Technol., B, 26(6), pp. 2624–2627. [CrossRef]
Volland, B. , Heerlein, H. , and Rangelow, I. , 2002, “ Electrostatically Driven Microgripper,” Microelectron. Eng., 61–62, pp. 1015–1023. [CrossRef]
Houston, K. , Eder, C. , Sieber, A. , Menciassi, A. , Carrozza, M. , and Dario, P. , 2007, “ Polymer Sensorised Microgrippers Using SMA Actuation,” IEEE International Conference on Robotics and Automation (ICRA), Roma, Italy, Apr. 10–14, pp. 820–825.
Yamahata, C. , Collard, D. , Legrand, B. , Takekawa, T. , Kumemura, M. , Hashiguchi, G. , and Fujita, H. , 2008, “ Silicon Nanotweezers With Subnanometer Resolution for the Micromanipulation of Biomolecules,” J. Microelectromech. Syst., 17(3), pp. 623–631. [CrossRef]
Tarhan, M. C. , Lafitte, N. , Tauran, Y. , Jalabert, L. , Kumemura, M. , Perret, G. , Kim, B. , Coleman, A. W. , Fujita, H. , and Collard, D. , 2016, “ A Rapid and Practical Technique for Real-Time Monitoring of Biomolecular Interactions Using Mechanical Responses of Macromolecules,” Sci. Rep., 6(1), pp. 1–10. [CrossRef]
Lafitte, N. , Haddab, Y. , Le Gorrec, Y. , Guillou, H. , Kumemura, M. , Jalabert, L. , Collard, D. , and Fujita, H. , 2015, “ Improvement of Silicon Nanotweezers Sensitivity for Mechanical Characterization of Biomolecules Using Closed-Loop Control,” IEEE/ASME Trans. Mechatron., 20(3), pp. 1418–1427. [CrossRef]
Kim, B.-S. , Park, J.-S. , Kang, B. H. , and Moon, C. , 2012, “ Fabrication and Property Analysis of a MEMS Micro-Gripper for Robotic Micro-Manipulation,” Rob. Comput.-Integr. Manuf., 28(1), pp. 50–56. [CrossRef]
Dow, A. B. A. , Jazizadeh, B. , Kherani, N. P. , and Rangelow, I. , 2011, “ Development and Modeling of an Electrothermally MEMS Microactuator With an Integrated Microgripper,” J. Micromech. Microeng., 21(12), p. 125026. [CrossRef]
Mackay, R. , Le, H. , and Keatch, R. , 2011, “ Design Optimisation and Fabrication of SU-8 Based Electro-Thermal Micro-Grippers,” J. Micro-Nano Mechatron., 6(1), pp. 13–22. [CrossRef]
Imai, S. , Ishikawa, T. , Sato, M. , Sato, H. , and Tamura, K. , 2010, “ Handling Characteristics of MEMS-Tweezers With Contact Surface Fabricated by DRIE,” J. Adv. Mech. Des., Syst. Manuf., 4(1), pp. 150–157. [CrossRef]
Giouroudi, I. , Hötzendorfer, H. , Kosel, J. , Andrijasevic, D. , and Brenner, W. , 2008, “ Development of a Microgripping System for Handling of Microcomponents,” Precis. Eng., 32(2), pp. 148–152. [CrossRef]
Zheng, X. , Kim, J.-K. , and Lee, D.-W. , 2011, “ Design and Fabrication of a Novel Microgripper With Four-Point Contact Fingers,” J. Vac. Sci. Technol., A, 29(1), p. 011007. [CrossRef]
Grossard, M. , Boukallel, M. , Chaillet, N. , and Rotinat-Libersa, C. , 2011, “ Modeling and Robust Control Strategy for a Control-Optimized Piezoelectric Microgripper,” IEEE/ASME Trans. Mechatron., 16(4), pp. 674–683. [CrossRef]
Chang, H. , Zhao, H. , Ye, F. , Yuan, G. , Xie, J. , Kraft, M. , and Yuan, W. , 2014, “ A Rotary Comb-Actuated Microgripper With a Large Displacement Range,” Microsyst. Technol., 20(1), pp. 119–126. [CrossRef]
Piriyanont, B. , and Moheimani, S. , 2014, “ MEMS Rotary Microgripper With Integrated Electrothermal Force Sensor,” J. Microelectromech. Syst., 23(6), pp. 1249–1251. [CrossRef]
Piriyanont, B. , Fowler, A. , and Moheimani, S. , 2015, “ Force-Controlled MEMS Rotary Microgripper,” J. Microelectromech. Syst., 24(4), pp. 1164–1172. [CrossRef]
Chen, B. , and Sun, Y. , 2011, “ A MEMS Microgripper With Changeable Gripping Tips,” 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), Beijing, China, June 5–9, pp. 498–501.
Komati, B. , Rabenorosoa, K. , Clevy, C. , and Lutz, P. , 2013, “ Automated Guiding Task of a Flexible Micropart Using a Two-Sensing-Finger Microgripper,” IEEE Trans. Autom. Sci. Eng., 10(3), pp. 515–524. [CrossRef]
Hazra, S. S. , Beuth, J. L. , Myers, G. A. , DelRio, F. W. , and de Boer, M. P. , 2015, “ Design and Test of Reliable High Strength Ingressive Polycrystalline Silicon Microgripper Arrays,” J, Micromech. Microeng., 25(1), p. 015009. [CrossRef]
Kalaiarasi, A. , and Thilagar, S. , 2012, “ Design and Modeling of Electrostatically Actuated Microgripper,” IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications (MESA), Suzhou, China, July 8–10, pp. 7–11.
Kim, C.-J. , Pisano, A. , and Muller, R. , 1992, “ Silicon-Processed Overhanging Microgripper,” J. Microelectromech. Syst., 1(1), pp. 31–36. [CrossRef]
Yoshida, K. , Tsukamoto, N. , Wan Kim, J. , and Yokota, S. , 2015, “ A Study on a Soft Microgripper Using MEMS-Based Divided Electrode Type Flexible Electro-Rheological Valves,” Mechatronics, 29, pp. 103–109. [CrossRef]
Luo, J. , Huang, R. , He, J. , Fu, Y. , Flewitt, A. , Spearing, S. , Fleck, N. , and Milne, W. , 2006, “ Modelling and Fabrication of Low Operation Temperature Microcages With a Polymer/Metal/DLC Trilayer Structure,” Sens. Actuators, A, 132(1), pp. 346–353. [CrossRef]
Jeon, C.-S. , Park, J.-S. , Lee, S.-Y. , and Moon, C.-W. , 2007, “ Fabrication and Characteristics of Out-of-Plane Piezoelectric Micro Grippers Using MEMS Processes,” Thin Solid Films, 515(12), pp. 4901–4904. [CrossRef]
Jain, R. K. , Majumder, S. , Ghosh, B. , and Saha, S. , 2015, “ Design and Manufacturing of Mobile Micro Manipulation System With a Compliant Piezoelectric Actuator Based Micro Gripper,” J. Manuf. Syst., 35, pp. 76–91. [CrossRef]
Alogla, A. , Amalou, F. , Balmer, C. , Scanlan, P. , Shu, W. , and Reuben, R. , 2015, “ Micro-Tweezers: Design, Fabrication, Simulation and Testing of a Pneumatically Actuated Micro-Gripper for Micromanipulation and Microtactile Sensing,” Sens. Actuators, A, 236, pp. 394–404. [CrossRef]
Kurita, Y. , Sugihara, F. , Ueda, J. , and Ogasawara, T. , 2012, “ Piezoelectric Tweezer-Type End Effector With Force- and Displacement-Sensing Capability,” IEEE/ASME Trans. Mechatron., 17(6), pp. 1039–1048. [CrossRef]
Rakotondrabe, M. , and Ivan, I. , 2011, “ Development and Force/Position Control of a New Hybrid Thermo-Piezoelectric Microgripper Dedicated to Micromanipulation Tasks,” IEEE Trans. Autom. Sci. Eng., 8(4), pp. 824–834. [CrossRef]
Kuo, J.-C. , Huang, H.-W. , Tung, S.-W. , and Yang, Y.-J. , 2014, “ A Hydrogel-Based Intravascular Microgripper Manipulated Using Magnetic Fields,” Sens. Actuators, A, 211, pp. 121–130. [CrossRef]
Wester, B. A. , Rajaraman, S. , Ross, J. D. , LaPlaca, M. C. , and Allen, M. G. , 2011, “ Development and Characterization of a Packaged Mechanically Actuated Microtweezer System,” Sens. Actuators, A, 167(2), pp. 502–511. [CrossRef]
Sardan, O. , Petersen, D. H. , Mølhave, K. , Sigmund, O. , and Boggild, P. , 2008, “ Topology Optimized Electrothermal Polysilicon Microgrippers,” Microelectron. Eng., 85(5–6), pp. 1096–1099. [CrossRef]
Voicu, R. , Muller, R. , and Eftime, L. , 2008, “ Design Optimization for an Electro-Thermally Actuated Polymeric Microgripper,” Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), Nice, France, Apr. 9–11, pp. 182–186.
Daunton, R. , Gallant, A. , Wood, D. , and Kataky, R. , 2011, “ A Thermally Actuated Microgripper as an Electrochemical Sensor With the Ability to Manipulate Single Cells,” Chem. Commun., 47(22), pp. 6446–6448. [CrossRef]
Shih, C. J. , and Lin, C. F. , 2006, “ A Two-Stage Topological Optimum Design for Monolithic Compliant Microgripper Integrated With Flexure Hinges,” J. Phys.: Conf. Ser., 34(1), p. 840.
Dodd, L. E. , Ward, S. C. , Cooke, M. D. , and Wood, D. , 2015, “ The Static and Dynamic Response of SU-8 Electrothermal Microgrippers of Varying Thickness,” Microelectron. Eng., 145, pp. 82–85. [CrossRef]
Huang, S.-C. , LEE, C.-M. , Chiu, C.-C. , and Chen, W.-L. , 2006, “ Topology Optimal Compliant Microgripper,” JSME Int. J. Ser. A: Solid Mech. Mater. Eng., 49(4), pp. 589–596. [CrossRef]
Piriyanont, B. , Moheimani, S. , and Bazaei, A. , 2013, “ Design and Control of a MEMS Micro-Gripper With Integrated Electro-Thermal Force Sensor,” Third Australian Control Conference (AUCC), Sydney, Australia, Nov. 4–5, pp. 479–484.
Wierzbicki, R. , Houston, K. , Heerlein, H. , Barth, W. , Debski, T. , Eisinberg, A. , Menciassi, A. , Carrozza, M. , and Dario, P. , 2006, “ Design and Fabrication of an Electrostatically Driven Microgripper for Blood Vessel Manipulation,” Microelectron. Eng., 83(4–9), pp. 1651–1654. [CrossRef]
Huang, S.-C. , and Chen, W.-L. , 2008, “ Design of Topologically Optimal Microgripper,” IEEE International Conference on Systems, Man and Cybernetics (SMC 2008), Singapore, Oct. 12–15, pp. 1694–1698.
Wierzbicki, R. , Adda, C. , and Hotzendorfer, H. , 2007, “ Electrostatic Silicon Microgripper With Low Voltage of Actuation,” International Symposium on Micro-NanoMechatronics and Human Science (MHS'07), Nagoya, Japan, Nov. 11–14, pp. 344–349.
Chen, B. , Zhang, Y. , and Sun, Y. , 2009, “ Active Release of Microobjects Using a MEMS Microgripper to Overcome Adhesion Forces,” J. Microelectromech. Syst., 18(3), pp. 652–659. [CrossRef]
Hamedi, M. , Salimi, P. , and Vismeh, M. , 2012, “ Simulation and Experimental Investigation of a Novel Electrostatic Microgripper System,” Microelectron. Eng., 98, pp. 467–471. [CrossRef]
Demaghsi, H. , Mirzajani, H. , and Ghavifekr, H. , 2014, “ A Novel Electrostatic Based Microgripper (Cellgripper) Integrated With Contact Sensor and Equipped With Vibrating System to Release Particles Actively,” Microsyst. Technol., 20(12), pp. 2191–2202. [CrossRef]
Demaghsi, H. , Mirzajani, H. , and Ghavifekr, H. , 2014, “ Design and Simulation of a Novel Metallic Microgripper Using Vibration to Release Nano Objects Actively,” Microsyst. Technol., 20(1), pp. 65–72. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Circular (a), elliptical (b), and corner-filleted (c) notch hinge

Grahic Jump Location
Fig. 2

Geometry of class I: structures with lumped compliance (1–6): (a) see Ref. [53], (b) see Ref. [87], (c) see Ref. [88], (d) see Ref. [89], (e) see Refs. [90] and [91], and (f) see Ref. [92]

Grahic Jump Location
Fig. 3

Geometry of class I: structures with lumped compliance (7–12): (a) see Refs. [9395], (b) see Ref. [96], (c) see Ref. [97], (d) see Ref. [98], (e) see Ref. [99], and (f) see Ref. [81]

Grahic Jump Location
Fig. 4

Geometry of class I: structures with lumped compliance (13–18): (a) see Refs. [9] and [100], (b) see Refs. [101] and [102], (c) see Ref. [103], (d) see Ref. [77], (e) see Ref. [104], and (f) see Ref. [105]

Grahic Jump Location
Fig. 5

Geometry of class I: structures with lumped compliance (19–24): (a) see Ref. [106], (b) see Ref. [107], (c) see Refs. [108] and [109], (d) see Ref. [86], (e) see Ref. [43], and (f) see Ref. [73]

Grahic Jump Location
Fig. 6

Geometry of class I: structures with lumped compliance (25–30): (a) see Ref. [76], (b) see Ref. [110], (c) see Ref. [89], (d) see Ref. [111], (e) see Ref. [112], and (f) see Ref. [89]

Grahic Jump Location
Fig. 7

Geometry of class I: structures with lumped compliance (31–35): (a) see Ref. [74], (b) see Ref. [72], (c) see Ref. [113], (d) see Refs. [114] and [115], and (e) see Ref. [75]

Grahic Jump Location
Fig. 8

Geometry of class II: systems with distributed compliance (1–6): (a) see Ref. [116], (b) see Ref. [118], (c) see Ref. [119], (d) see Refs. [120] and [121], (e) see Ref. [122], and (f) see Ref. [123]

Grahic Jump Location
Fig. 9

Geometry of class II: systems with distributed compliance (7–12): (a) see Refs. [46], [124], and [125], (b) see Ref. [126], (c) see Ref. [127], (d) see Ref. [128], (e) see Ref. [129], and (f) see Ref. [130]

Grahic Jump Location
Fig. 10

Geometry of class II: systems with distributed compliance (13–18): (a) see Ref. [45], (b) see Ref. [131], (c) see Ref. [132], (d) see Refs. [133] and [134], (e) see Refs. [135137], and (f) see Ref. [138]

Grahic Jump Location
Fig. 11

Geometry of class II: systems with distributed compliance (19–24): (a) see Refs. [80], [139], and [140], (b) see Ref. [78], (c) see Ref. [141], (d) see Ref. [142], (e) see Refs. [143] and [144], and (f) see Ref. [145]

Grahic Jump Location
Fig. 12

Geometry of class II: systems with distributed compliance (25–30): (a) see Ref. [146], (b) see Ref. [147], (c) see Ref. [148], (d) see Refs. [149] and [150], (e) see Ref. [79], and (f) see Refs. [14] and [151]

Grahic Jump Location
Fig. 13

Geometry of class II: systems with distributed compliance (31–32): (a) see Ref. [152] and (b) see Ref. [153]

Grahic Jump Location
Fig. 14

Geometry of class III: special structures (1–6): (a) see Ref. [154], (b) see Ref. [155], (c) see Ref. [156], (d) see Ref. [157], (e) see Refs. [158160], and (f) see Ref. [161]

Grahic Jump Location
Fig. 15

Geometry of class III: special structures (7–12): (a) see Ref. [162], (b) see Ref. [163], (c) see Refs. [164] and [165], (d) see Ref. [166], (e) see Ref. [167], and (f) see Ref. [168]

Grahic Jump Location
Fig. 16

Geometry of class III: special structures (13–18): (a) see Ref. [169], (b) see Ref. [170], (c) see Ref. [171], (d) see Ref. [172], (e) see Ref. [173], and (f) see Ref. [174]

Grahic Jump Location
Fig. 17

Geometry of class III: special structures (19–24): (a) see Ref. [175], (b) see Refs. [176] and [177], (c) see Ref. [178], (d) see Ref. [179], (e) see Ref. [180], and (f) see Ref. [181]

Grahic Jump Location
Fig. 18

Geometry of class III: special structures (25–30): (a) see Ref. [182], (b) see Ref. [183], (c) see Ref. [184], (d) see Ref. [185], (e) see Ref. [186], and (f) see Ref. [17]

Grahic Jump Location
Fig. 19

Geometry of class III: special structures (31): (a) see Refs. [187] and [188]

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In