Research Papers: Design of Mechanisms and Robotic Systems

Compliance Synthesis of CSFH MEMS-Based Microgrippers

[+] Author and Article Information
Matteo Verotti

Department of Mechanical and
Aerospace Engineering,
Sapienza University of Rome,
Rome 00184, Italy
e-mail: matteo.verotti@uniroma1.it

Alden Dochshanov

Department of Mechanical and
Aerospace Engineering,
Sapienza University of Rome,
Rome 00184, Italy
e-mail: alden.dochshanov@uniroma1.it

Nicola P. Belfiore

Department of Mechanical and
Aerospace Engineering,
Sapienza University of Rome,
Rome 00184, Italy
e-mail: belfiore@dima.uniroma1.it

1Corresponding author.

Contributed by the Mechanisms and Robotics Committee of ASME for publication in the JOURNAL OF MECHANICAL DESIGN. Manuscript received April 27, 2016; final manuscript received October 10, 2016; published online November 14, 2016. Assoc. Editor: Massimo Callegari.

J. Mech. Des 139(2), 022301 (Nov 14, 2016) (10 pages) Paper No: MD-16-1313; doi: 10.1115/1.4035053 History: Received April 27, 2016; Revised October 10, 2016

In the last decades, grippers have been employed extensively at the microscale, for example, in microbiology and in microassembly. In these fields, specifically, it is essential to improve the performance of these systems in terms of precision, actuation, and sensing of the gripping force. Recent investigations drew attention on the tip–environment interaction force, which gave rise to further studies on the tip compliance behavior. This paper reveals a new method for designing MEMS technology-based compliant microgrippers with prescribed specifications for the jaw tip compliance. This approach relies on the equivalence between a compliant mechanism and its corresponding pseudorigid-body model (PRBM), the former embedding conjugate surfaces flexure hinges (CSFHs) as flexures. Such correspondence has been assessed by means of finite element analysis (FEA) simulations and theoretical models.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


McAllister, D. V. , Allen, M. G. , and Prausnitz, M. R. , 2000, “ Microfabricated Microneedles for Gene and Drug Delivery,” Annu. Rev. Biomed. Eng., 2(1), pp. 289–313. [CrossRef] [PubMed]
Kimura, Y. , and Yanagimachi, R. , 1995, “ Intracytoplasmic Sperm Injection in the Mouse,” Biol. Reprod., 52(4), pp. 709–720. [CrossRef] [PubMed]
Garcés-Schröder, M. , Leester-Schädel, M. , Schulz, M. , Böl, M. , and Dietzel, A. , 2015, “ Micro-Gripper: A New Concept for a Monolithic Single-Cell Manipulation Device,” Sens. Actuators, A, 236, pp. 130–139. [CrossRef]
Ingber, D. E. , 2006, “ Cellular Mechanotransduction: Putting All the Pieces Together Again,” FASEB J., 20(7), pp. 811–827. [CrossRef] [PubMed]
Moeendarbary, E. , and Harris, A. R. , 2014, “ Cell Mechanics: Principles, Practices, and Prospects,” Wiley Interdiscip. Rev.: Syst. Biol. Med., 6(5), pp. 371–388. [CrossRef] [PubMed]
Cecil, J. , Powell, D. , and Vasquez, D. , 2007, “ Assembly and Manipulation of Micro Devices—A State of the Art Survey,” Rob. Comput.-Integr. Manuf., 23(5), pp. 580–588. [CrossRef]
Carrozza, M. C. , Eisinberg, A. , Menciassi, A. , Campolo, D. , Micera, S. , and Dario, P. , 2000, “ Towards a Force-Controlled Microgripper for Assembling Biomedical Microdevices,” J. Micromech. Microeng., 10(2), pp. 271–276. [CrossRef]
Kim, D.-H. , Kim, B. , and Kang, H. , 2004, “ Development of a Piezoelectric Polymer-Based Sensorized Microgripper for Microassembly and Micromanipulation,” Microsyst. Technol., 10(4), pp. 275–280. [CrossRef]
Chronis, N. , and Lee, L. , 2004, “ Polymer MEMS-Based Microgripper for Single Cell Manipulation,” 17th IEEE International Conference on Micro Electro Mechanical Systems, pp. 17–20.
Sun, X. , Chen, W. , Fatikow, S. , Tian, Y. , Zhou, R. , Zhang, J. , and Mikczinski, M. , 2015, “ A Novel Piezo-Driven Microgripper With a Large Jaw Displacement,” Microsyst. Technol., 21(4), pp. 931–942. [CrossRef]
Hamedi, M. , Salimi, P. , and Vismeh, M. , 2012, “ Simulation and Experimental Investigation of a Novel Electrostatic Microgripper System,” Microelectron. Eng., 98, Special issue MNE 2011 – Part II, pp. 467–471. [CrossRef]
Wierzbicki, R. , Houston, K. , Heerlein, H. , Barth, W. , Debski, T. , Eisinberg, A. , Menciassi, A. , Carrozza, M. , and Dario, P. , 2006, “ Design and Fabrication of an Electrostatically Driven Microgripper for Blood Vessel Manipulation,” Microelectron. Eng., 83(4–9), pp. 1651–1654. [CrossRef]
Zhang, Y. , Chen, B. , Liu, X. , and Sun, Y. , 2010, “ Autonomous Robotic Pick-and-Place of Microobjects,” IEEE Trans. Rob., 26(1), pp. 200–207. [CrossRef]
Chen, T. , Sun, L. , Chen, L. , Rong, W. , and Li, X. , 2010, “ A Hybrid-Type Electrostatically Driven Microgripper With an Integrated Vacuum Tool,” Sens. Actuators, A, 158(2), pp. 320–327. [CrossRef]
Yeh, J. , Jiang, S.-S. , and Lee, C. , 2006, “ MOEMS Variable Optical Attenuators Using Rotary Comb Drive Actuators,” IEEE Photonics Technol. Lett., 18(10), pp. 1170–1172. [CrossRef]
Cecchi, R. , Verotti, M. , Capata, R. , Dochshanov, A. , Broggiato, G. , Crescenzi, R. , Balucani, M. , Natali, S. , Razzano, G. , Lucchese, F. , Bagolini, A. , Bellutti, P. , Sciubba, E. , and Belfiore, N. , 2015, “ Development of Micro-Grippers for Tissue and Cell Manipulation With Direct Morphological Comparison,” Micromachines, 6(11), pp. 1710–1728. [CrossRef]
Zeman, M. J. F. , Bordatchev, E. V. , and Knopf, G. K. , 2006, “ Design, Kinematic Modeling and Performance Testing of an Electro-Thermally Driven Microgripper for Micromanipulation Applications,” J. Micromech. Microeng., 16(8), p. 1540. [CrossRef]
Zhang, R. , Chu, J. , Wang, H. , and Chen, Z. , 2013, “ A Multipurpose Electrothermal Microgripper for Biological Micro-Manipulation,” Microsyst. Technol., 19(1), pp. 89–97. [CrossRef]
Chang, R. , Wang, H. , and Wang, Y. , 2003, “ Development of Mesoscopic Polymer Gripper System Guided by Precision Design Axioms,” Precis. Eng., 27(4), pp. 362–369. [CrossRef]
Kohl, M. , Just, E. , Pfleging, W. , and Miyazaki, S. , 2000, “ SMA Microgripper With Integrated Antagonism,” Sens. Actuators, A, 83(1–3), pp. 208–213. [CrossRef]
Chen, T. , Chen, L. , Sun, L. , Wang, J. , and Li, X. , 2008, “ A Sidewall Piezoresistive Force Sensor Used in a MEMS Gripper,” International Conference on Intelligent Robotics and Applications Proceedings, Part II, ICIRA, Wuhan, China, Oct. 15–17. pp. 207–216.
Zubir, M. N. M. , Shirinzadeh, B. , and Tian, Y. , 2009, “ Development of a Novel Flexure-Based Microgripper for High Precision Micro-Object Manipulation,” Sens. Actuators, A, 150(2), pp. 257–266. [CrossRef]
Lan, C.-C. , Lin, C.-M. , and Fan, C.-H. , 2011, “ A Self-Sensing Microgripper Module With Wide Handling Ranges,” IEEE/ASME Trans. Mechatronics, 16(1), pp. 141–150. [CrossRef]
Shen, Y. , Winder, E. , Xi, N. , Pomeroy, C. , and Wejinya, U. , 2006, “ Closed-Loop Optimal Control-Enabled Piezoelectric Microforce Sensors,” IEEE/ASME Trans. Mechatronics, 11(4), pp. 420–427. [CrossRef]
Lu, Z. , Chen, P. , Ganapathy, A. , Zhao, G. , Nam, J. , Yang, G. , Burdet, E. , Teo, C. , Meng, Q. , and Lin, W. , 2006, “ A Force-Feedback Control System for Micro-Assembly,” J. Micromech. Microeng., 16(9), pp. 1861–1868. [CrossRef]
Rakotondrabe, M. , Rabenorosoa, K. , Agnus, J. , and Chaillet, N. , 2011, “ Robust Feedforward-Feedback Control of a Nonlinear and Oscillating 2-DoF Piezocantilever,” IEEE Trans. Autom. Sci. Eng., 8(3), pp. 506–519. [CrossRef]
Estevez, P. , Bank, J. , Porta, M. , Wei, J. , Sarro, P. , Tichem, M. , and Staufer, U. , 2012, “ 6 DOF Force and Torque Sensor for Micro-Manipulation Applications,” Sens. Actuators, A, 186, Selected Papers presented at Eurosensors XXV – Athens, Greece, Sept. 4–7, pp. 86–93. [CrossRef]
Wei, J. , Porta, M. , Tichem, M. , and Sarro, P. , 2009, “ A Contact Position Detection and Interaction Force Monitoring Sensor for Micro-Assembly Applications,” International Solid-State Sensors, Actuators and Microsystems Conference, TRANSDUCERS, IEEE, pp. 2385–2388.
Xu, Q. , 2015, “ Design, Fabrication, and Testing of an MEMS Microgripper With Dual-Axis Force Sensor,” IEEE Sens. J., 15(10), pp. 6017–6026. [CrossRef]
Kim, K. , Liu, X. , Zhang, Y. , and Sun, Y. , 2008, “ Nanonewton Force-Controlled Manipulation of Biological Cells Using a Monolithic MEMS Microgripper With Two-Axis Force Feedback,” J. Micromech. Microeng., 18(5), p. 055013. [CrossRef]
Rabenorosoa, K. , Clévy, C. , Chen, Q. , and Lutz, P. , 2012, “ Study of Forces During Microassembly Tasks Using Two-Sensing-Fingers Grippers,” IEEE/ASME Trans. Mechatronics, 17(5), pp. 811–821. [CrossRef]
Verotti, M. , and Belfiore, N. , 2016, “ Isotropic Compliance in E(3): Feasibility and Workspace Mapping,” ASME J. Mech. Rob., 8(6), p. 061005. [CrossRef]
Verotti, M. , Masarati, P. , Morandini, M. , and Belfiore, N. , 2016, “ Isotropic Compliance in the Special Euclidean Group SE(3),” Mech. Machine Theory, 98, pp. 263–281. [CrossRef]
Howell, L. L. , Magleby, S. P. , and Olsen, B. M. , 2013, Handbook of Compliant Mechanisms, Wiley, New York.
Howell, L. , 2001, Compliant Mechanisms, Wiley-Interscience, New York.
Lobontiu, N. , Garcia, E. , Goldfarb, M. , and Paine, J. S. , 2001, “ Corner-Filleted Flexure Hinges,” ASME J. Mech. Des., 123(3), pp. 346–352. [CrossRef]
Yong, Y. K. , Lu, T.-F. , and Handley, D. C. , 2008, “ Review of Circular Flexure Hinge Design Equations and Derivation of Empirical Formulations,” Precis. Eng., 32(2), pp. 63–70. [CrossRef]
Verotti, M. , 2016, “ Analysis of the Center of Rotation in Primitive Flexures: Uniform Cantilever Beams With Constant Curvature,” Mech. Machine Theory, 97, pp. 29–50. [CrossRef]
Pei, X. , Yu, J. , Zong, G. , Bi, S. , and Su, H. , 2009, “ The Modeling of Cartwheel Flexural Hinges,” Mech. Machine Theory, 44(10), pp. 1900–1909. [CrossRef]
Cannon, J. , and Howell, L. , 2005, “ A Compliant Contact-Aided Revolute Joint,” Mech. Machine Theory, 40(11), pp. 1273–1293. [CrossRef]
Machekposhti, D. F. , Tolou, N. , and Herder, J. , 2015, “ A Review on Compliant Joints and Rigid-Body Constant Velocity Universal Joints Toward the Design of Compliant Homokinetic Couplings,” ASME J. Mech. Des., 137(3), p. 032301. [CrossRef]
Howell, L. , and Midha, A. , 1995, “ Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms,” ASME J. Mech. Des., 117(1), pp. 156–165. [CrossRef]
Meng, Q. , Li, Y. , and Xu, J. , 2014, “ A Novel Analytical Model for Flexure-Based Proportion Compliant Mechanisms,” Precis. Eng., 38(3), pp. 449–457. [CrossRef]
Belfiore, N. , Broggiato, G. , Verotti, M. , Balucani, M. , Crescenzi, R. , Bagolini, A. , Bellutti, P. , and Boscardin, M. , 2015, “ Simulation and Construction of a MEMS CSFH Based Microgripper,” Int. J. Mech. Control, 16(1), pp. 21–30.
Verotti, M. , Crescenzi, R. , Balucani, M. , and Belfiore, N. P. , 2015, “ MEMS-Based Conjugate Surfaces Flexure Hinge,” ASME J. Mech. Des., 137(1), p. 012301. [CrossRef]
Laermer, F. , and Schilp, A. , 1994, “ Method for Anisotropically Etching Silicon,” Patent Nos. DE4241045C1, EP0625285A1, EP0625285B1, US5501893, and WO1994014187A1.
Tachi, S. , Tsujimoto, K. , and Okudaira, S. , 1988, “ Low-Temperature Reactive Ion Etching and Microwave Plasma Etching of Silicon,” Appl. Phys. Lett., 52(8), pp. 616–618. [CrossRef]
Parasuraman, J. , Summanwar, A. , Marty, F. , Basset, P. , Angelescu, D. , and Bourouina, T. , 2014, “ Deep Reactive Ion Etching of Sub-Micrometer Trenches With Ultra High Aspect Ratio,” Microelectron. Eng., 113, pp. 35–39. [CrossRef]
Marty, F. , Rousseau, L. , Saadany, B. , Mercier, B. , Français, O. , Mita, Y. , and Bourouina, T. , 2005, “ Advanced Etching of Silicon Based on Deep Reactive Ion Etching For Silicon High Aspect Ratio Microstructures and Three-Dimensional Micro- and Nanostructures,” Microelectron. J., 36(7), pp. 673–677. [CrossRef]
Owen, K. J. , VanDerElzen, B. , Peterson, R. L. , and Najafi, K. , 2012, “ High Aspect Ratio Deep Silicon Etching,” IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 251–254.
Tillocher, T. , Kafrouni, W. , Ladroue, J. , Lefaucheux, P. , Boufnichel, M. , Ranson, P. , and Dussart, R. , 2011, “ Optimization of Submicron Deep Trench Profiles With the Stiger Cryoetching Process: Reduction of Defects,” J. Micromech. Microeng., 21(8), p. 085005. [CrossRef]
Belfiore, N. , Verotti, M. , Di Giamberardino, P. , and Rudas, I. , 2012, “ Active Joint Stiffness Regulation to Achieve Isotropic Compliance in the Euclidean Space,” ASME J. Mech. Rob., 4(4), p. 041010. [CrossRef]
Wang, D. H. , Yang, Q. , and Dong, H. M. , 2013, “ A Monolithic Compliant Piezoelectric-Driven Microgripper: Design, Modeling, and Testing,” IEEE/ASME Trans. Mechatronics, 18(1), pp. 138–147. [CrossRef]
Huang, S. , and Schimmels, J. M. , 2016, “ Realization of Point Planar Elastic Behaviors Using Revolute Joint Serial Mechanisms Having Specified Link Lengths,” Mech. Machine Theory, 103, pp. 1–20. [CrossRef]
Tsai, L.-W. , 1999, Robot Analysis: The Mechanics of Serial and Parallel Manipulators, Wiley, New York.
Hopcroft, M. A. , Nix, W. D. , and Kenny, T. W. , 2010, “ What Is the Young's Modulus of Silicon?,” J. Microelectromech. Syst., 19(2), pp. 229–238. [CrossRef]
Petersen, K. E. , 1982, “ Silicon as a Mechanical Material,” Proc. IEEE, 70(5), pp. 420–457. [CrossRef]


Grahic Jump Location
Fig. 1

Compliance selectivity at the jaws. The interaction forces cause the transition from the neutral configuration (gray color) to the deformed one (dashed line). The mechanism compliance determines the tip displacements a and b along y and x, respectively. Selective compliance along y implies a > b.

Grahic Jump Location
Fig. 2

CSFH and geometrical parameter of the constant-curvature beam

Grahic Jump Location
Fig. 3

Schematic layout: reference frames, gripper orientation with respect to the wafer primary flat, compliance ellipsoids (Cl, Cr), and specified frame–object distances (dl, dr)

Grahic Jump Location
Fig. 4

RR dyads configurations resulting from the anisotropic scaling condition

Grahic Jump Location
Fig. 7

Compliant microgripper embedding rotary comb-drive actuators

Grahic Jump Location
Fig. 6

Compliant microgripper and corresponding PRBM

Grahic Jump Location
Fig. 5

Replacement of the revolute joint by the CSFH

Grahic Jump Location
Fig. 9

Right arm: simulation setup, mesh detail, and deformed configuration corresponding to a force magnitude equal to 10 μN, directed at an angle of 200 deg with respect to the x-axis

Grahic Jump Location
Fig. 10

Left arm: simulation setup, flexures details, and maximum principal stress distribution corresponding to a force magnitude equal to 10 μN, directed at an angle of 150 deg with respect to the x-axis

Grahic Jump Location
Fig. 11

Left arm: tip displacements in the x–y plane evaluated by theoretical model and by FEA (isotropic and anisotropic formulations)

Grahic Jump Location
Fig. 12

Right arm: tip displacements in the x–y plane evaluated by theoretical model and by FEA (isotropic and anisotropic formulations)

Grahic Jump Location
Fig. 13

Left arm: differences between the x-component (top) and y-component (bottom) displacements between the theoretical and the FEA anisotropic formulation

Grahic Jump Location
Fig. 14

Right arm: differences between the x-component (top) and y-component (bottom) displacements between the theoretical and the FEA anisotropic formulation

Grahic Jump Location
Fig. 15

Anisotropic factors for the left and right arms: comparison between theoretical and the FEA anisotropic formulation

Grahic Jump Location
Fig. 16

Left arm: highest values of the maximum principal stress varying the force direction and the force magnitude

Grahic Jump Location
Fig. 17

Right arm: highest values of the maximum principal stress varying the force direction and the force magnitude




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In