Yoshimura,
Y.
, 1955, “
On the Mechanism of Buckling of a Circular Cylindrical Shell Under Axial Compression,” National Advisory Committee for Aeronautics, Washington, DC, Technical Report No. 1390.

Coppa,
A. P.
, 1967, “
Inextensional Buckling Configurations of Conical Shells,” AIAA J.,
5(4), pp. 750–754.

[CrossRef]
Lobkovsky,
A.
, and
Witten,
T. A.
, 1997, “
Properties of Ridges in Elastic Membranes,” Phys. Rev. E,
55(2), pp. 1577–1589.

[CrossRef]
Witten,
T. A.
, 2007, “
Stress Focusing in Elastic Sheets,” Rev. Mod. Phys.,
79(2), pp. 643–675.

[CrossRef]
Ciarlet,
P. G.
, 1993, Mathematical Elasticity: Three-Dimensional Elasticity,
Elsevier, Amsterdam, The Netherlands.

Miura,
K.
, 1980, “
Method of Packaging and Deployment of Large Membranes in Space,” 31st Congress International Astronautical Federation, pp. 1–10.

Silverberg,
J. L.
,
Evans,
A. A.
,
McLeod,
L.
,
Hayward,
R. C.
,
Hull,
T. C.
,
Santangelo,
C. D.
, and
Cohen,
I.
, 2014, “
Using Origami Design Principles to Fold Reprogrammable Mechanical Metamaterials,” Science,
345(6197), pp. 647–650.

[CrossRef] [PubMed]
Silverberg,
J. L.
,
Na,
J.-H.
,
Evans,
A. A.
,
Liu,
B.
,
Hull,
T. C.
,
Santangelo,
C. D.
,
Lang,
R. J.
,
Hayward,
R. C.
, and
Cohen,
I.
, 2015, “
Origami Structures With a Critical Transition to Bistability Arising From Hidden Degrees of Freedom,” Nat. Mater.,
14(4), pp. 389–393.

[CrossRef] [PubMed]
Zhang,
X.
,
Cheng,
G.
,
You,
Z.
, and
Zhang,
H.
, 2007, “
Energy Absorption of Axially Compressed Thin-Walled Square Tubes With Patterns,” Thin-Walled Struct.,
45(9), pp. 737–746.

[CrossRef]
Song,
J.
,
Chen,
Y.
, and
Lu,
G.
, 2012, “
Axial Crushing of Thin-Walled Structures With Origami Patterns,” Thin-Walled Struct.,
54, pp. 65–71.

[CrossRef]
Kuribayashi,
K.
,
Tsuchiya,
K.
,
You,
Z.
,
Tomus,
D.
,
Umemoto,
M.
,
Ito,
T.
, and
Sasaki,
M.
, 2006, “
Self-Deployable Origami Stent Grafts as a Biomedical Application of Ni-Rich TiNi Shape Memory Alloy Foil,” Mater. Sci. Eng. A,
419(1–2), pp. 131–137.

[CrossRef]
Abel,
Z.
,
Connelly,
R.
,
Demaine,
E. D.
,
Demaine,
M. L.
,
Hull,
T. C.
,
Lubiw,
A.
, and
Tachi,
T.
, 2015, “
Rigid Flattening of Polyhedra With Slits,” Origami6, p. 109.

Balkcom,
D. J.
,
Demaine,
E. D.
,
Demaine,
M. L.
, and
Ochsendorf,
J. A.
, 2009, “
Folding Paper Shopping Bags,” *Origami4*, Vol.
4, R. Lang, ed., CRC Press, Boca Raton, FL.

Wu,
W.
, and
You,
Z.
, 2011, “
A Solution for Folding Rigid Tall Shopping Bags,” Proc. R. Soc. A,
467(2133), pp. 2561–2574.

[CrossRef]
Dudte,
L. H.
,
Vouga,
E.
,
Tachi,
T.
, and
Mahadevan,
L.
, 2016, “
Programming Curvature Using Origami Tessellations,” Nat. Mater.,
15(5), pp. 583–588.

[CrossRef] [PubMed]
Saito,
K.
,
Tsukahara,
A.
, and
Okabe,
Y.
, 2016, “
Designing of Self-Deploying Origami Structures Using Geometrically Misaligned Crease Patterns,” Proc. R. Soc. A,
472(2185), pp. 1–16.

[CrossRef]
Kilian,
M.
,
Flöry,
S.
,
Chen,
Z.
,
Mitra,
N.
,
Sheffer,
A.
, and
Pottmann,
H.
, 2008, “
Curved Folding,” ACM Trans. Graph.,
27(6), pp. 75:1–75:9.

Filipov,
E. T.
,
Paulino,
G. H.
, and
Tachi,
T.
, 2016, “
Origami Tubes With Reconfigurable Polygonal Cross-Sections,” Proc. R. Soc. A,
472(2185), p. 20150607.

[CrossRef]
Guest,
S. D.
, and
Pellegrino,
S.
, 1994, “
The Folding of Triangulated Cylinders—Part II: The Folding Process,” ASME J. Appl. Mech.,
61(4), pp. 778–783.

[CrossRef]
Guest,
S. D.
, and
Pellegrino,
S.
, 1996, “
The Folding of Triangulated Cylinders—Part III: Experiments,” ASME J. Appl. Mech.,
63(1), pp. 77–83.

[CrossRef]
Yasuda,
H.
,
Yein,
T.
,
Tachi,
T.
,
Miura,
K.
, and
Taya,
M.
, 2013, “
Folding Behaviour of Tachi-Miura Polyhedron Bellows,” Proc. R. Soc. A,
469(2159), pp. 1–18.

[CrossRef]
Cauchy,
A. L.
, 1813, “
Recherche sur les polyèdres—premier mémoire,” J. Ec. Polytech.,
9, pp. 68–86.

Connelly,
R.
, 1979. “
The Rigidity of Polyhedral Surfaces,” Math. Mag.,
52(5), pp. 275–283.

[CrossRef]
Connelly,
R.
,
Sabitov,
I.
, and
Walz,
A.
, 1997, “
The Bellows Conjecture,” Beitr. Algebra Geom.,
38(1), pp. 1–10.

Huffman,
D. A.
, 1976. “
Curvature and Creases: A Primer on Paper,” IEEE Trans. Comput.,
C-25(10), pp. 1010–1019.

[CrossRef]
Belcastro,
S.-M.
, and
Hull,
T. C.
, 2002, “
Modelling the Folding of Paper Into Three Dimensions Using Affine Transformations,” Linear Algebra Appl.,
348(1–3), pp. 273–282.

[CrossRef]
Streinu,
I.
, and
Whiteley,
W.
, 2004, “
Single-Vertex Origami and Spherical Expansive Motions,” Discrete and Computational Geometry,
Springer,
Berlin, pp. 161–173.

Wu,
W.
, and
You,
Z.
, 2010, “
Modelling Rigid Origami With Quaternions and Dual Quaternions,” Proc. R. Soc. A,
466(2119), pp. 2155–2174.

[CrossRef]
Guest,
S. D.
, and
Pellegrino,
S.
, 1994, “
The Folding of Triangulated Cylinders—Part I: Geometric Considerations,” ASME J. Appl. Mech.,
61(4), pp. 773–777.

[CrossRef]
Miura,
K.
, 1969, “
Proposition of Pseudo-Cylindrical Concave Polyhedral Shells,” ISAS Rep.,
34(9), pp. 141–163.

Tachi,
T.
, 2009, “
Generalization of Rigid Foldable Quadrilateral Mesh Origami,” Symposium of the International Association For Shell And Spatial Structures, pp. 2287–2294.

Wang,
K.
, and
Chen,
Y.
, 2011, “
Folding a Patterned Cylinder by Rigid Origami,” *Origami5*, P. Wang-Iverson, R. J. Lang, and M. Yim, eds., CRC Press, Boca Raton, FL.

Tachi,
T.
, 2009, “
One-DOF Cylindrical Deployable Structures With Rigid Quadrilateral Panels,” IASS Symposium, pp. 2295–2305.

Miura,
K.
, and
Tachi,
T.
, 2011, “
Synthesis of Rigid-Foldable Cylindrical Polyhedra,” pp. 1–10.

Massey,
W. S.
, 1962, “
Surfaces of Gaussian Curvature Zero in Euclidean 3-Space,” Tohoku Math. J., Second Ser.,
14(1), pp. 73–79.

[CrossRef]