0
Research Papers: Design of Mechanisms and Robotic Systems

Thumb Configuration and Performance Evaluation for Dexterous Robotic Hand Design

[+] Author and Article Information
Hairong Wang

The State Key Laboratory of
Robotics and System,
Harbin Institute of Technology,
Harbin 150001, China
e-mail: h.wang.hit@gmail.com

Shaowei Fan

The State Key Laboratory of
Robotics and System,
Harbin Institute of Technology,
Harbin 150001, China
e-mail: fswhit@gmail.com

Hong Liu

The State Key Laboratory of
Robotics and System,
Harbin Institute of Technology,
Harbin 150001, China
e-mail: dlrhitlab@aliyun.com

1Corresponding author.

Contributed by the Mechanisms and Robotics Committee of ASME for publication in the JOURNAL OF MECHANICAL DESIGN. Manuscript received March 14, 2016; final manuscript received September 15, 2016; published online November 11, 2016. Assoc. Editor: David Myszka.

J. Mech. Des 139(1), 012304 (Nov 11, 2016) (12 pages) Paper No: MD-16-1208; doi: 10.1115/1.4034837 History: Received March 14, 2016; Revised September 15, 2016

The force and/or motion transmissibility and the analyticity of inverse kinematics for a thumb mechanism depend on thumb configuration. This paper presents a general framework for the thumb configuration and performance evaluation in the design of dexterous robotic hand. The thumb configuration is described by the functional analysis of human thumb, and the thumb of robotic hand is generalized into 15 configurations. A performance evaluation method is proposed based on kinetostatic and dynamic dexterity as well as workspace. The kinetostatic dexterity is based on a Jacobian matrix condition number (JMCN). A dynamic dexterity measure is presented via acceleration analysis, which keeps a clear geometric meaning. The proposed method is applied to evaluate the performance of three examples, which cover thumb configurations of most existing dexterous hands. Performance evaluation results demonstrate the effectiveness of the proposed method. Using these results and the proposed performance evaluation method, meaningful design principles are presented to guide the design of the thumb configuration.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Diftler, M. A. , Mehling, J. S. , Abdallah, M. E. , Radford, N. A. , Bridgwater, L. B. , Sanders, A. M. , Askew, R. S. , Linn, D. M. , Yamokoski, J. D. , Permenter, F. A. , Hargrave, B. K. , Platt, R. , Savely, R. T. , and Ambrose, R. O. , 2011, “ Robonaut 2: The First Humanoid Robot in Space,” IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9–13, pp. 2178–2183.
Odhner, L. U. , Jentoft, L. P. , Claffee, M. R. , Corson, N. , Tenzer, Y. , Ma, R. R. , Buehler, M. , Kohout, R. , Howe, R. D. , and Dollar, A. M. , 2014, “ A Compliant, Underactuated Hand for Robust Manipulation,” Int. J. Rob. Res., 33(5), pp. 736–752. [CrossRef]
Grebenstein, M. , Chalon, M. , Hirzinger, G. , and Siegwart, R. , 2010, “ Antagonistically Driven Finger Design for the Anthropomorphic DLR Hand Arm System,” 10th IEEE-RAS International Conference on Humanoid Robots (Humanoids), Nashville, TN, Dec. 6–8, pp. 609–616.
Chalon, M. , Grebenstein, M. , Wimbock, T. , and Hirzinger, G. , 2010, “ The Thumb: Guidelines for a Robotic Design,” 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan, Oct 18–22, pp. 5886–5893.
Bridgwater, L. B. , Ihrke, C. A. , Diftler, M. A. , Abdallah, M. E. , Radford, N. A. , Rogers, J. M. , Yayathi, S. , Askew, R. S. , and Linn, D. M. , 2012, “ The Robonaut 2 Hand-Designed To Do Work With Tools,” IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, MN, May 14–18, pp. 3425–3430.
Peerdeman, B. , Valori, M. , Brouwer, D. , Hekman, E. , Misra, S. , and Stramigioli, S. , 2014, “ UT Hand I: A Lock-Based Underactuated Hand Prosthesis,” Mech. Mach. Theory, 78, pp. 307–323. [CrossRef]
Kapandji, I. A. , 2007, The Physiology of the Joints: Upper Limb, 6th ed., Vol. 1, Churchill Livingstone, London.
Wang, H. , Fan, S. , and Liu, H. , 2012, “ An Anthropomorphic Design Guideline for the Thumb of the Dexterous Hand,” International Conference on Mechatronics and Automation (ICMA), Chengdu, China, Aug. 5–8, pp. 777–782.
Bullock, I . M. , Borràs, J. , and Dollar, A. M. , 2012, “ Assessing Assumptions in Kinematic Hand Models: A Review,” 4th IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, June 24–27, pp. 139–146.
Chang, L. Y. , and Pollard, N. S. , 2007, “ Constrained Least-Squares Optimization for Robust Estimation of Center of Rotation,” J. Biomech., 40(6), pp. 1392–1400. [CrossRef] [PubMed]
Chang, L. Y. , and Pollard, N. S. , 2008, “ Method for Determining Kinematic Parameters of the in vivo Thumb Carpometacarpal Joint,” IEEE Trans. Biomed. Eng., 55(7), pp. 1897–1906. [CrossRef] [PubMed]
Rezzoug, N. , and Gorce, P. , 2008, “ Prediction of Fingers Posture Using Artificial Neural Networks,” J. Biomech., 41(12), pp. 2743–2749. [CrossRef] [PubMed]
Santos, V . J. , and Valero-Cuevas, F. J. , 2006, “ Reported Anatomical Variability Naturally Leads to Multimodal Distributions of Denavit-Hartenberg Parameters for the Human Thumb,” IEEE Trans. Biomed. Eng., 53(2), pp. 155–163. [CrossRef] [PubMed]
Wu, J. Z. , Dong, R. G. , McDowell, T. W. , and Welcome, D. E. , 2009, “ Modeling the Finger Joint Moments in a Hand at the Maximal Isometric Grip: The Effects of Friction,” Med. Eng. Phys., 31(10), pp. 1214–1218. [CrossRef] [PubMed]
Valero-Cuevas, F. J. , Johanson, M. E. , and Towles, J. D. , 2003, “ Towards a Realistic Biomechanical Model of the Thumb: The Choice of Kinematic Description May Be More Critical Than the Solution Method or the Variability/Uncertainty of Musculoskeletal Parameters,” J. Biomech., 36(7), pp. 1019–1030. [CrossRef] [PubMed]
Cui, L. , Cupcic, U. , and Dai, J. S. , 2014, “ An Optimization Approach to Teleoperation of the Thumb of a Humanoid Robot Hand: Kinematic Mapping and Calibration,” ASME J. Mech. Des., 136(9), p. 091005. [CrossRef]
Haidacher, S. , Butterfass, J. , Fischer, M. , Grebenstein, M. , Jöhl, K. , Kunze, K. , Nickl, M. , Seitz, N. , and Hirzinger, G. , 2003, “ DLR Hand II: Hard-and Software Architecture for Information Processing,” IEEE International Conference on Robotics and Automation (ICRA), Taipei, Taiwan, Sept. 14–19, pp. 684–689.
Butterfass, J. , Grebenstein, M. , Liu, H. , and Hirzinger, G. , 2001, “ DLR-Hand II: Next Generation of a Dextrous Robot Hand,” IEEE International Conference on Robotics and Automation (ICRA), IEEE, Seoul, Korea, May 21–26, pp. 109–114.
Chalon, M. , Wedler, A. , Baumann, A. , Bertleff, W. , Beyer, A. , Butterfass, J. , Grebenstein, M. , Gruber, R. , Hacker, F. , Kraemer, E. , Landzettel, K. , Maier, M. , Sedlmayr, H. J. , Seitz, N. , Wappler, F. , Willberg, B. , Wimboeck, T. , Hirzinger, G. , and Didot, F. , 2011, “ Dexhand: A Space Qualified Multi-Fingered Robotic Hand,” IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9–13, pp. 2204–2210.
Jacobsen, S. C. , Wood, J. E. , Knutti, D. F. , and Biggers, K. B. , 1984, “ The UTAH/MIT Dextrous Hand: Work in Progress,” Int. J. Rob. Res., 3(4), pp. 21–50. [CrossRef]
Kawasaki, H. , Komatsu, T. , and Uchiyama, K. , 2002, “ Dexterous Anthropomorphic Robot Hand With Distributed Tactile Sensor: Gifu Hand II,” IEEE/ASME Trans. Mechatronics, 7(3), pp. 296–303. [CrossRef]
Mouri, T. , Kawasaki, H. , Yoshikawa, K. , Takai, J. , and Ito, S. , 2002, “ Anthropomorphic Robot Hand: Gifu Hand III,” International Conference on Control, Automation and Systems (ICCAS), Jeonbuk, Korea, Oct. 16–19, Jeonbuk, Korea, Oct. 16–19, pp. 1288–1293.
Ueda, J. , Kondo, M. , and Ogasawara, T. , 2010, “ The Multifingered NAIST Hand System for Robot In-Hand Manipulation,” Mech. Mach. Theory, 45(2), pp. 224–238. [CrossRef]
Hirzinger, G. , Fischer, M. , Brunner, B. , Koeppe, R. , Otter, M. , Grebenstein, M. , and Schäfer, I. , 1999, “ Advances in Robotics: The DLR Experience,” Int. J. Rob. Res., 18(11), pp. 1064–1087. [CrossRef]
Liu, H. , Wu, K. , Meusel, P. , Seitz, N. , Hirzinger, G. , Jin, M. H. , Liu, Y. W. , Fan, S. W. , Lan, T. , and Chen, Z. P. , 2008, “ Multisensory Five-Finger Dexterous Hand: The DLR/HIT Hand II,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2008), Nice, France, Sept. 22–26, pp. 3692–3697.
Fukaya, N. , Asfour, T. , Dillmann, R. , and Toyama, S. , 2013, “ Development of a Five-Finger Dexterous Hand Without Feedback Control: The TUAT/Karlsruhe Humanoid Hand,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, Nov. 3–7, pp. 4533–4540.
Iwata, H. , and Sugano, S. , 2009, “ Design of Anthropomorphic Dexterous Hand With Passive Joints and Sensitive Soft Skins,” IEEE/SICE International Symposium on System Integration (SII 2009), Fukuoka, Japan, Aug. 18–21, pp. 129–134.
Schmitz, A. , Pattacini, U. , Nori, F. , Natale, L. , Metta, G. , and Sandini, G. , 2010, “ Design, Realization and Sensorization of the Dexterous Icub Hand,” 10th IEEE-RAS International Conference on Humanoid Robots (Humanoids), Nashville, TN, Dec. 6–8, pp. 186–191.
Weir, R. , Mitchell, M. , Clark, S. , Puchhammer, G. , Haslinger, M. , Grausenburger, R. , Kumar, N. , Hofbauer, R. , Kushnigg, P. , Cornelius, V. , Eder, M. , Eaton, H. , and Wenstrand, D. , 2008, “ The Intrinsic Hand: A 22 Degree-of-Freedom Artificial Hand-Wrist Replacement,” Myoelectric Symposium, Fredericton, NB, Canada, Aug. 13–15, pp. 233–237.
Kurita, Y. , Ono, Y. , Ikeda, A. , and Ogasawara, T. , 2011, “ Human-Sized Anthropomorphic Robot Hand With Detachable Mechanism at the Wrist,” Mech. Mach. Theory, 46(1), pp. 53–66. [CrossRef]
Palli, G. , Melchiorri, C. , Vassura, G. , Scarcia, U. , Moriello, L. , Berselli, G. , Cavallo, A. , De Maria, G. , Natale, C. , Pirozzi, S. , May, C. , Ficuciello, F. , and Siciliano, B. , 2014, “ The DEXMART Hand: Mechatronic Design and Experimental Evaluation of Synergy-Based Control for Human-Like Grasping,” Int. J. Rob. Res., 33(5), pp. 799–824. [CrossRef]
Palli, G. , and Pirozzi, S. , 2013, “ An Optical Joint Position Sensor for Anthropomorphic Robot Hands,” IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, May 6–10, pp. 2765–2770.
Mitchell, M. , and Weir, R. F. , 2008, “ Development of a Clinically Viable Multifunctional Hand Prosthesis,” Myoelectric Symposium, Fredericton, NB, Canada, Aug. 13–15, pp. 45–49.
Controzzi, M. , Cipriani, C. , Jehenne, B. , Donati, M. , and Carrozza, M. C. , 2010, “ Bio-Inspired Mechanical Design of a Tendon-Driven Dexterous Prosthetic Hand,” Engineering in Medicine and Biology Society (EMBC), Annual International Conference of the IEEE, Buenos Aires, Argentina, Aug. 31–Sept. 4, pp. 499–502.
Röthling, F. , Haschke, R. , Steil, J. J. , and Ritter, H. , 2007, “ Platform Portable Anthropomorphic Grasping With the Bielefeld 20-DOF Shadow and 9-DOF TUM Hand,” IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, Oct. 29–Nov. 2, pp. 2951–2956.
Martin, J. , and Grossard, M. , 2014, “ Design of a Fully Modular and Backdrivable Dexterous Hand,” Int. J. Rob. Res., 33(5), pp. 783–798. [CrossRef]
Liu, H. , Meusel, P. , Hirzinger, G. , Jin, M. , Liu, Y. , and Xie, Z. , 2008, “ The Modular Multisensory DLR-HIT-Hand: Hardware and Software Architecture,” IEEE/ASME Trans. Mechatronics, 13(4), pp. 461–469. [CrossRef]
Liu, H. , Meusel, P. , Seitz, N. , Willberg, B. , Hirzinger, G. , Jin, M. H. , Liu, Y. W. , Wei, R. , and Xie, Z. W. , 2007, “ The Modular Multisensory DLR-HIT-Hand,” Mech. Mach. Theory, 42(5), pp. 612–625. [CrossRef]
Angeles, J. , and Park, F. C. , 2008, “ Performance Evaluation and Design Criteria,” Springer Handbook of Robotics, B. Siciliano and O. Khatib , eds., Springer, Berlin, pp. 229–244.
Prattichizzo, D. , and Trinkle, J. C. , 2008, “ Grasping,” Springer Handbook of Robotics, B. Siciliano and O. Khatib , eds., Springer, Berlin, pp. 671–700.
Siciliano, B. , Sciavicco, L. , Villani, L. , and Oriolo, G. , 2008, Robotics: Modelling, Planning and Control, Springer, London.
Park, F. C. , and Brockett, R. W. , 1994, “ Kinematic Dexterity of Robotic Mechanisms,” Int. J. Rob. Res., 13(1), pp. 1–15. [CrossRef]
Cui, L. , and Dai, J. S. , 2011, “ Posture, Workspace, and Manipulability of the Metamorphic Multifingered Hand With an Articulated Palm,” ASME J. Mech. Rob., 3(2), p. 021001. [CrossRef]
Yoshikawa, T. , 1985, “ Manipulability of Robotic Mechanisms,” Int. J. Rob. Res., 4(2), pp. 3–9. [CrossRef]
Klein, C. A. , and Blaho, B. E. , 1987, “ Dexterity Measures for the Design and Control of Kinematically Redundant Manipulators,” Int. J. Rob. Res., 6(2), pp. 72–83. [CrossRef]
Salisbury, J. K. , and Craig, J. J. , 1982, “ Articulated Hands Force Control and Kinematic Issues,” Int. J. Rob. Res., 1(1), pp. 4–17. [CrossRef]
Yokokohji, Y. , Martin, J. S. , and Fujiwara, M. , 2009, “ Dynamic Manipulability of Multifingered Grasping,” IEEE Trans. Rob., 25(4), pp. 947–954. [CrossRef]
Yoshikawa, T. , 1985, “ Dynamic Manipulability of Robot Manipulators,” IEEE International Conference on Robotics and Automation, St. Louis, MO, Mar. 25, pp. 1033–1038.
Guan, Y. , Yokoi, K. , and Zhang, X. , 2008, “ Numerical Methods for Reachable Space Generation of Humanoid Robots,” Int. J. Rob. Res., 27(8), pp. 935–950. [CrossRef]
Hamilton, R. , and Dunsmuir, R. A. , 2002, “ Radiographic Assessment of the Relative Lengths of the Bones of the Fingers of the Human Hand,” J. Hand Surg., 27(6), pp. 546–548. [CrossRef]
Gosselin, C. and Angeles, J. , 1991, “ A Global Performance Index for the Kinematic Optimization of Robotic Manipulators,” ASME J. Mech. Des., 113(3), pp. 220–226. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Thumb anatomy: (a) joints and bones [7,8] and (b) biomechanical rotation axes [9]

Grahic Jump Location
Fig. 2

Thumb configurations: (a)–(f) 211 type thumb, (g)–(j) 221 type thumb, and (k)–(p) 311 type thumb. Ai(i = 1,2,…,5) indicates the axis of the thumb joints.

Grahic Jump Location
Fig. 4

Kinematic models and the D–H coordinate frames of three examples. (a) Variant of configuration (p). There is a fixed angle ρ between joint 1 and the thumb axis. l3, l4, and l5 are the lengths of their phalanxes, respectively. The finger length L is equal to l3 + l4 + l5. The appearance characteristic parameter l isdescribed as L2+d2. (b) Variant of configuration (d). There is a fixed twist angle ρ between joints 2 and 3. l2, l3, and l4 are the lengths of their phalanxes, respectively. The finger length L is equal to l2 + l3 + l4. The appearance characteristic parameter l is described as L + d. (c) Configuration (h). l2, l4, and l5 are the lengths of their phalanxes, respectively. The finger length L is equal to l2 + l4 + l5, which is the appearance characteristic parameter l.

Grahic Jump Location
Fig. 3

Discretization method describing workspace based on the Monte Carlo method. The cell size Δx × Δy × Δz is determined according to trade-off between accuracy and the number of cells [49].

Grahic Jump Location
Fig. 5

Atlases of KDIW for a variant of configuration (p). To illustrate the atlases clearly, areas A–D are divided.

Grahic Jump Location
Fig. 12

The HIT-DLR II Hand: (a) photograph and (b) relationship between R and k

Grahic Jump Location
Fig. 6

Atlases of KDIW for a variant of configuration (d). To illustrate the atlases clearly, areas A–D are divided.

Grahic Jump Location
Fig. 7

Atlases of KDIW for configuration (h). To illustrate the atlases clearly, areas A and B are divided.

Grahic Jump Location
Fig. 8

Global performance atlases of each element of KDIW for a variant of configuration (p): (a) WGI, (b) WVI, (c) Ia, (d) Iv (IJ), (e) IH, and (f) VΩ

Grahic Jump Location
Fig. 9

Global performance atlases of each element of KDIW for a variant of configuration (d): (a) WGI, (b) WVI, (c) Ia, (d) Iv (IJ), (e) IH, and (f) VΩ

Grahic Jump Location
Fig. 10

Global performance atlases of each element of KDIW for configuration (h): (a) WGI, (b) WVI, (c) Ia, (d) Iv (IJ), (e) IH, and (f)VΩ

Grahic Jump Location
Fig. 11

Comparison of the performance for the seven typical configurations. It is good to be far away from the center.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In