0
Research Papers: Design Automation

Generalized Radial Basis Function-Based High-Dimensional Model Representation Handling Existing Random Data

[+] Author and Article Information
Haitao Liu

School of Energy and Power Engineering,
Dalian University of Technology,
Dalian 116024, China
e-mail: lht@mail.dlut.edu.cn

Xiaofang Wang

School of Energy and Power Engineering,
Dalian University of Technology,
Dalian 116024, China
e-mail: dlwxf@dlut.edu.cn

Shengli Xu

School of Energy and Power Engineering,
Dalian University of Technology,
Dalian 116024, China
e-mail: xusl@dlut.edu.cn

1Corresponding author.

Contributed by the Design Automation Committee of ASME for publication in the JOURNAL OF MECHANICAL DESIGN. Manuscript received February 3, 2016; final manuscript received September 2, 2016; published online November 11, 2016. Assoc. Editor: Gary Wang.

J. Mech. Des 139(1), 011404 (Nov 11, 2016) (13 pages) Paper No: MD-16-1098; doi: 10.1115/1.4034835 History: Received February 03, 2016; Revised September 02, 2016

The radial basis function-based high-dimensional model representation (RBF–HDMR) is very promising as a metamodel for high dimensional costly simulation-based functions. But in the modeling procedure, it requires well-structured regular points sampled on cut lines and planes. In practice, we usually have some existing random points that do not lie on cut lines or planes. For this case, RBF–HDMR cannot utilize the information of these random points because of its inner regular sampling process. To utilize the existing random points, this article presents two strategies to build a generalized RBF–HDMR (GRBF–HDMR) model. The GRBF–HDMR model using the error model (EM) strategy, called GRBF–HDMREM, constructs an error RBF model based on the prediction errors at all the sampled points to improve the RBF–HDMR predictions. While the GRBF–HDMR model using the error allocation (EA) strategy, called GRBF–HDMREA, employs the virtual regular points projected from the random points and the estimated virtual responses to update the component RBF predictions, which thereafter improves the overall RBF–HDMR predictions. Numerical experiments on eight functions and an engineering example reveal that the error allocation strategy is more effective in utilizing the random data to improve the RBF–HDMR predictions, since it creates the virtual points that follow the sampling rule in RBF–HDMR and estimates the virtual responses accurately for most cases.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Topics: Modeling , Errors
Your Session has timed out. Please sign back in to continue.

References

Jin, R. , Chen, W. , and Simpson, T. W. , 2001, “ Comparative Studies of Metamodelling Techniques Under Multiple Modelling Criteria,” Struct. Multidiscip. Optim., 23(1), pp. 1–13. [CrossRef]
Wang, L. , Beeson, D. , Wiggs, G. , and Rayasam, M. , 2006, “ A Comparison of Metamodeling Methods Using Practical Industry Requirements,” AIAA Paper No. 2006-1811.
Zhao, D. , and Xue, D. , 2010, “ A Comparative Study of Metamodeling Methods Considering Sample Quality Merits,” Struct. Multidiscip. Optim., 42(6), pp. 923–938. [CrossRef]
Shan, S. , and Wang, G. G. , 2010, “ Metamodeling for High Dimensional Simulation-Based Design Problems,” ASME J. Mech. Des., 132(5), p. 051009. [CrossRef]
Sobol, I. M. , 1990, “ On Sensitivity Estimation for Nonlinear Mathematical Models,” Matematicheskoe Modelirovanie, 2(1), pp. 112–118.
Rabitz, H. , and Aliş, Ö. F. , 1999, “ General Foundations of High-Dimensional Model Representations,” J. Math. Chem., 25(2–3), pp. 197–233. [CrossRef]
Li, G. , Rosenthal, C. , and Rabitz, H. , 2001, “ High Dimensional Model Representations,” J. Phys. Chem. A, 105(33), pp. 7765–7777. [CrossRef]
Li, G. , Wang, S.-W. , Rosenthal, C. , and Rabitz, H. , 2001, “ High Dimensional Model Representations Generated From Low Dimensional Data Samples. I. mp-Cut-HDMR,” J. Math. Chem., 30(1), pp. 1–30. [CrossRef]
Wang, S.-W. , Georgopoulos, P. G. , Li, G. , and Rabitz, H. , 2003, “ Random Sampling-High Dimensional Model Representation (RS-HDMR) With Nonuniformly Distributed Variables: Application to an Integrated Multimedia/Multipathway Exposure and Dose Model for Trichloroethylene,” J. Phys. Chem. A, 107(23), pp. 4707–4716. [CrossRef]
Tunga, M. A. , and Demiralp, M. , 2005, “ A Factorized High Dimensional Model Representation on the Nodes of a Finite Hyperprismatic Regular Grid,” Appl. Math. Comput., 164(3), pp. 865–883.
Li, G. , Hu, J. , Wang, S.-W. , Georgopoulos, P. G. , Schoendorf, J. , and Rabitz, H. , 2006, “ Random Sampling-High Dimensional Model Representation (RS-HDMR) and Orthogonality of Its Different Order Component Functions,” J. Phys. Chem. A, 110(7), pp. 2474–2485. [CrossRef] [PubMed]
Tunga, M. A. , and Demiralp, M. , 2006, “ Hybrid High Dimensional Model Representation (HHDMR) on the Partitioned Data,” J. Comput. Appl. Math., 185(1), pp. 107–132. [CrossRef]
Chowdhury, R. , and Rao, B. , 2009, “ Hybrid High Dimensional Model Representation for Reliability Analysis,” Comput. Methods Appl. Mech. Eng., 198(5), pp. 753–765. [CrossRef]
Shan, S. , and Wang, G. G. , 2011, “ Turning Black-Box Functions Into White Functions,” ASME J. Mech. Des., 133(3), p. 031003. [CrossRef]
Tang, L. , Li, G. , and Wang, H. , 2011, “ Kriging-HDMR Metamodeling Technique for Nonlinear Problems,” Chin. J. Theor. Appl. Mech., 43(4), pp. 780–784.
Wang, H. , Tang, L. , and Li, G. , 2011, “ Adaptive MLS-HDMR Metamodeling Techniques for High Dimensional Problems,” Expert Syst. Appl., 38(11), pp. 14117–14126.
Li, E. , Wang, H. , and Li, G. , 2012, “ High Dimensional Model Representation (HDMR) Coupled Intelligent Sampling Strategy for Nonlinear Problems,” Comput. Phys. Commun., 183(9), pp. 1947–1955. [CrossRef]
Huang, Z. , Qiu, H. , Zhao, M. , Cai, X. , and Gao, L. , 2015, “ An Adaptive SVR-HDMR Model for Approximating High Dimensional Problems,” Eng. Comput., 32(3), pp. 643–667. [CrossRef]
Cai, X. , Qiu, H. , Gao, L. , Yang, P. , and Shao, X. , 2016, “ An Enhanced RBF-HDMR Integrated With an Adaptive Sampling Method for Approximating High Dimensional Problems in Engineering Design,” Struct. Multidiscip. Optim., 53(6), pp. 1209–1229. [CrossRef]
Liu, H. , Xu, S. , Wang, X. , Wu, J. , and Song, Y. , 2015, “ A Global Optimization Algorithm for Simulation-Based Problems Via the Extended DIRECT Scheme,” Eng. Optim., 47(11), pp. 1441–1458. [CrossRef]
Liu, H. T. , Xu, S. L. , Ma, Y. , and Wang, X. F. , 2015, “ Global Optimization of Expensive Black Box Functions Using Potential Lipschitz Constants and Response Surfaces,” J. Global Optim., 63(2), pp. 229–251. [CrossRef]
Liu, H. , Xu, S. , Chen, X. , Wang, X. , and Ma, Q. , 2016, “ Constrained Global Optimization Via a DIRECT-Type Constraint-Handling Technique and an Adaptive Metamodeling Strategy,” Struct. Multidiscip. Optim., pp. 1–23.
Hajikolaei, K. H. , and Wang, G. G. , 2012, “ Adaptive Orthonormal Basis Functions for High Dimensional Metamodeling With Existing Sample Points,” ASME Paper No. DETC2012-70480.
Hajikolaei, K. H. , and Wang, G. G. , 2014, “ High Dimensional Model Representation With Principal Component Analysis,” ASME J. Mech. Des., 136(1), p. 011003. [CrossRef]
Chen, V. C. , Tsui, K.-L. , Barton, R. R. , and Meckesheimer, M. , 2006, “ A Review on Design, Modeling and Applications of Computer Experiments,” IIE Trans., 38(4), pp. 273–291. [CrossRef]
Wang, G. G. , and Shan, S. , 2007, “ Review of Metamodeling Techniques in Support of Engineering Design Optimization,” ASME J. Mech. Des., 129(4), pp. 370–380. [CrossRef]
Tang, L. , 2013, “ The Key of Research and Application of Multi-Parameter Nonlinear Optimization,” Ph.D. thesis, Hunan University, Changsha, Hunan, China.
Viana, F. A. , Haftka, R. T. , and Steffen, V., Jr. , 2009, “ Multiple Surrogates: How Cross-Validation Errors Can Help Us to Obtain the Best Predictor,” Struct. Multidiscip. Optim., 39(4), pp. 439–457. [CrossRef]
Xu, S. L. , Liu, H. T. , Wang, X. F. , and Jiang, X. M. , 2014, “ A Robust Error-Pursuing Sequential Sampling Approach for Global Metamodeling Based on Voronoi Diagram and Cross Validation,” ASME J. Mech. Des., 136(7), p. 071009. [CrossRef]
Liu, H. , Xu, S. , Ma, Y. , Chen, X. , and Wang, X. , 2016, “ An Adaptive Bayesian Sequential Sampling Approach for Global Metamodeling,” ASME J. Mech. Des., 138(1), p. 011404. [CrossRef]
Hardy, R. L. , 1971, “ Multiquadric Equations of Topography and Other Irregular Surfaces,” J. Geophys. Res., 76(8), pp. 1905–1915. [CrossRef]
Cheng, G. H. , Younis, A. , Hajikolaei, K. H. , and Wang, G. G. , 2015, “ Trust Region Based Mode Pursuing Sampling Method for Global Optimization of High Dimensional Design Problems,” ASME J. Mech. Des., 137(2), p. 021407. [CrossRef]
Johnson, M. E. , Moore, L. M. , and Ylvisaker, D. , 1990, “ Minimax and Maximin Distance Designs,” J. Stat. Plann. Inference, 26(2), pp. 131–148. [CrossRef]
Mueller, L. , Alsalihi, Z. , and Verstraete, T. , 2013, “ Multidisciplinary Optimization of a Turbocharger Radial Turbine,” ASME J. Turbomach., 135(2), p. 021022. [CrossRef]
Acar, E. , 2014, “ Simultaneous Optimization of Shape Parameters and Weight Factors in Ensemble of Radial Basis Functions,” Struct. Multidiscip. Optim., 49(6), pp. 969–978. [CrossRef]
Shi, R. , Liu, L. , Long, T. , and Liu, J. , 2016, “ An Efficient Ensemble of Radial Basis Functions Method Based on Quadratic Programming,” Eng. Optim., 48(7), pp. 1202–1225. [CrossRef]
Liu, H. , Xu, S. , Wang, X. , Meng, J. , and Yang, S. , 2016, “ Optimal Weighted Pointwise Ensemble of Radial Basis Functions With Different Basis Functions,” AIAA J., 54(10), pp. 3117–3133. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Flowchart of the second-order RBF–HDMR metamodeling process

Grahic Jump Location
Fig. 7

Contour plot of the GRBF–HDMREA model for the 2D function

Grahic Jump Location
Fig. 8

Stepped cantilever beam with d steps

Grahic Jump Location
Fig. 3

Contour plot of the 2D function

Grahic Jump Location
Fig. 4

Contour plot of the RBF–HDMR model for the 2D function

Grahic Jump Location
Fig. 9

Boxplots of the (a) RAAEN and (b) RMAEN values of GRBF–HDMREM and GRBF–HDMREA for the test functions

Grahic Jump Location
Fig. 5

Ten existing random points that do not lie on the two cut lines

Grahic Jump Location
Fig. 6

Contour plot of the GRBF–HDMREM model for the 2D function

Grahic Jump Location
Fig. 10

The average modeling results of the first-order and second-order GRBF–HDMREM and GRBF–HDMREA for F1, F3, F5, and F7 with different random sample sizes

Grahic Jump Location
Fig. 11

The modeling results of GRBF–HDMREA for F1, F3, F5, and F7 with β, respectively, being 0.5, 1, 2, and 4

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In