Saunders,
N.
, and
Miodownik,
A. P.
, 1998, CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, Vol.
1,
Elsevier, Amsterdam, The Netherlands.

Bale,
C.
,
Chartrand,
P.
,
Degterov,
S.
,
Eriksson,
G.
,
Hack,
K.
,
Ben Mahfoud,
R.
,
Melançon,
J.
,
Pelton,
A.
, and
Petersen,
S.
, 2002, “
Factsage Thermochemical Software and Databases,” Calphad,
26(2), pp. 189–228.

[CrossRef]
Gheribi,
A. E.
,
Robelin,
C.
,
Digabel,
S. L.
,
Audet,
C.
, and
Pelton,
A. D.
, 2011, “
Calculating All Local Minima on Liquidus Surfaces Using the Factsage Software and Databases and the Mesh Adaptive Direct Search Algorithm,” J. Chem. Thermodyn.,
43(9), pp. 1323–1330.

[CrossRef]
Gheribi,
A. E.
,
Audet,
C.
,
Le Digabel,
S.
,
Bélisle,
E.
,
Bale,
C.
, and
Pelton,
A.
, 2012, “
Calculating Optimal Conditions for Alloy and Process Design Using Thermodynamic and Property Databases, the Factsage Software and the Mesh Adaptive Direct Search Algorithm,” Calphad,
36, pp. 135–143.

[CrossRef]
Zhu,
R.
,
Li,
S.
,
Karaman,
I.
,
Arroyave,
R.
,
Niendorf,
T.
, and
Maier,
H. J.
, 2012, “
Multi-Phase Microstructure Design of a Low-Alloy Trip-Assisted Steel Through a Combined Computational and Experimental Methodology,” Acta Mater.,
60(6–7), pp. 3022–3033.

[CrossRef]
Zhu,
R.
,
Li,
S.
,
Karaman,
I.
,
Arroyave,
R.
,
Niendorf,
T.
, and
Maier,
H. J.
, 2012, “
Multi-Phase Microstructure Design of a Low-Alloy Trip-Assisted Steel Through a Combined Computational and Experimental Methodology,” Acta Mater.
60(6–7), pp. 3022–3033.

[CrossRef]
Li,
S.
,
Zhu,
R.
,
Karaman,
I.
, and
Arroyave,
R.
, 2012, “
Thermodynamic Analysis of Two-Stage Heat Treatment in Trip Steels,” Acta Mater.,
60(17), pp. 6120–6139.

[CrossRef]
Li,
S.
,
Zhu,
R.
,
Karaman,
I.
, and
Arroyave,
R.
, 2012, “
Thermodynamic Analysis of Two-Stage Heat Treatment in TRIP Steels,” Acta Mater.
60(17), pp. 6120–6130.

[CrossRef]
Audet,
C.
, and
Dennis,
J., Jr.
, 2006, “
Mesh Adaptive Direct Search Algorithms for Constrained Optimization,” SIAM J. Optim.,
17(1), pp. 188–217.

[CrossRef]
Gomez-Acebo,
T.
,
Sarasola,
M.
, and
Castro,
F.
, 2003, “
Systematic Search of Low Melting Point Alloys in the Fe-Cr-Mn-Mo-C System,” Calphad,
27(3), pp. 325–334.

[CrossRef]
Du,
H.
, and
Morral,
J.
, 1997, “
Prediction of the Lowest Melting Point Eutectic in the Fe-Cr-Mo-V-C System,” J. Alloys Compd.,
247(1), pp. 122–127.

[CrossRef]
Hou,
J. S.
,
Guo,
J. T.
,
Zhou,
L. Z.
, and
Ye,
H. Q.
, 2006, “
Sigma Phase Formation and Its Effect on Mechanical Properties in the Corrosion-Resistant Superalloy K44,” Z. Metallkd./Mater. Res. Adv. Tech.,
97(2), pp. 174–181.

Ward,
A. C.
,
Liker,
J. K.
,
Cristiano,
J. J.
, and
Sobek,
D. K., II
, 1995, “
The Second Toyota Paradox: How Delaying Decisions Can Make Better Cars Faster,” MIT Sloan Manage. Rev.,
Spring, pp. 43–61.

Shahan,
D. W.
, and
Seepersad,
C. C.
, 2012, “
Bayesian Network Classifiers for Set-Based Collaborative Design,” ASME J. Mech. Des.,
134(7), p. 071001.

[CrossRef]
Matthews,
J.
,
Klatt,
T.
,
Morris,
C.
,
Seepersad,
C. C.
,
Haberman,
M.
, and
Shahan,
D.
, 2016, “
Hierarchical Design of Negative Stiffness Metamaterials Using a Bayesian Network Classifier,” ASME J. Mech. Des.,
138(4), p. 041404.

[CrossRef]
Rosen,
D. W.
, 2015, “
A Set-Based Design Method for Material-Geometry Structures by Design Space Mapping,” ASME Paper No. DETC2015-46760.

Cruz,
J.
, 2005, “
Constraint Reasoning for Differential Models,” 2005 Conference on Constraint Reasoning for Differential Models,
IOS Press, pp. 1–216.

Ward,
A. C.
, 1989, “
A Theory of Quantitative Inference Applied to a Mechanical Design Compiler,” Ph.D., MIT, Cambridge, MA.

Montgomery,
D. C.
, 2008, Design and Analysis of Experiments,
Wiley, New York.

Choi,
H.-J.
,
Mcdowell,
D. L.
,
Allen,
J. K.
, and
Mistree,
F.
, 2008, “
An Inductive Design Exploration Method for Hierarchical Systems Design Under Uncertainty,” Eng. Optim.,
40(4), pp. 287–307.

[CrossRef]
Choi,
H.
,
McDowell,
D. L.
,
Allen,
J. K.
,
Rosen,
D.
, and
Mistree,
F.
, 2008, “
An Inductive Design Exploration Method for Robust Multiscale Materials Design,” ASME J. Mech. Des.,
130(3), p. 031402.

[CrossRef]
Wang,
C.
,
Duan,
Q.
,
Gong,
W.
,
Ye,
A.
,
Di,
Z.
, and
Miao,
C.
, 2014, “
An Evaluation of Adaptive Surrogate Modeling Based Optimization With Two Benchmark Problems,” Environ. Modell. Software,
60, pp. 167–179.

[CrossRef]
Huang,
D.
,
Allen,
T.
,
Notz,
W.
, and
Miller,
R.
, 2006, “
Sequential Kriging Optimization Using Multiple-Fidelity Evaluations,” Struct. Multidiscip. Optim.,
32(5), pp. 369–382.

[CrossRef]
Wang,
G. G.
,
Wang,
L.
, and
Shan,
S.
, 2005, “
Reliability Assessment Using Discriminative Sampling and Metamodeling,” SAE Technical Paper No. 2005-01-0349.

Bichon,
B. J.
,
Eldred,
M. S.
,
Swiler,
L. P.
,
Mahadevan,
S.
, and
McFarland,
J. M.
, 2008, “
Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions,” AIAA J.,
46(10), pp. 2459–2468.

[CrossRef]
Basudhar,
A.
, and
Missoum,
S.
, 2008, “
Adaptive Explicit Decision Functions for Probabilistic Design and Optimization Using Support Vector Machines,” Comput. Struct.,
86(19), pp. 1904–1917.

[CrossRef]
Tax,
D. M.
, and
Duin,
R. P.
, 1999, “
Support Vector Domain Description,” Pattern Recognit. Lett.,
20(11–13), pp. 1191–1199.

[CrossRef]
Tsang,
E.
, 1993, Foundations of Constraint Satisfaction, Vol.
289,
Academic Press,
London.

Golomb,
S. W.
, and
Baumert,
L. D.
, 1965, “
Backtrack Programming,” JACM,
12(4), pp. 516–524.

[CrossRef]
Ginsberg,
M. L.
, and
Harvey,
W. D.
, 1992, “
Iterative Broadening,” Artif. Intell.,
55(2), pp. 367–383.

[CrossRef]
Harvey,
W. D.
, and
Ginsberg,
M. L.
, 1995, “
Limited Discrepancy Search,” IJCAI,
1, pp. 607–615.

Sam-Haroud,
D.
, and
Faltings,
B.
, 1996, “
Consistency Techniques for Continuous Constraints,” Constraints,
1(1), pp. 85–118.

[CrossRef]
Cruz,
J.
, and
Barahona,
P.
, 2003, “
Constraint Satisfaction Differential Problems,” Principles and Practice of Constraint Programming–CP 2003,
Springer, Berlin, pp. 259–273.

Finch,
W. W.
, and
Ward,
A. C.
, 1997, “
A Set-Based System for Eliminating Infeasible Designs in Engineering Problems Dominated by Uncertainty,” Proceedings of the ASME Design Engineering Technical Conferences, Sacramento, CA, Paper No. DETC97/DTM-3886.

Hu,
J.
,
Aminzadeh,
M.
, and
Wang,
Y.
, 2014, “
Searching Feasible Design Space by Solving Quantified Constraint Satisfaction Problems,” ASME J. Mech. Des.,
136(3), p. 031002.

[CrossRef]
Hu,
J.
,
Wang,
Y.
,
Cheng,
A.
, and
Zhong,
Z.
, 2015, “
Sensitivity Analysis in Quantified Interval Constraint Satisfaction Problems,” ASME J. Mech. Des.,
137(4), p. 041701.

[CrossRef]
Van Hentenryck,
P.
,
Michel,
L.
, and
Deville,
Y.
, 1997, Numerica: A Modeling Language for Global Optimization,
MIT Press, Cambridge, MA.

Devanathan,
S.
, and
Ramani,
K.
, 2010, “
Creating Polytope Representations of Design Spaces for Visual Exploration Using Consistency Techniques,” ASME J. Mech. Des.,
132(8), p. 081011.

[CrossRef]
Neumaier,
A.
, 2004, “
Complete Search in Continuous Global Optimization and Constraint Satisfaction,” Acta Numer.,
13(1), pp. 271–369.

[CrossRef]
Kearfott,
R. B.
, 1987, “
Abstract Generalized Bisection and a Cost Bound,” Math. Comput.,
49(179), pp. 187–202.

[CrossRef]
Sasena,
M. J.
, 2002, “
Flexibility and Efficiency Enhancements for Constrained Global Design Optimization With Kriging Approximations,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.

Schonlau,
M.
, 1998, Computer Experiments and Global Optimization,
University of Waterloo,
Waterloo, ON, Canada.

Au,
S.
, and
Beck,
J. L.
, 1999, “
A New Adaptive Importance Sampling Scheme for Reliability Calculations,” Struct. Saf.,
21(2), pp. 135–158.

[CrossRef]
Basudhar,
A.
, and
Missoum,
S.
, 2010, “
An Improved Adaptive Sampling Scheme for the Construction of Explicit Boundaries,” Struct. Multidiscip. Optim.,
42(4), pp. 517–529.

[CrossRef]
Basudhar,
A.
, 2011, Computational Optimal Design and Uncertainty Quantification of Complex Systems Using Explicit Decision Boundaries,
The University of Arizona,
Tucson, AZ.

Tax,
D. M.
, and
Duin,
R. P.
, 2004, “
Support Vector Data Description,” Mach. Learn.,
54(1), pp. 45–66.

[CrossRef]
Le,
T.
,
Tran,
D.
,
Ma,
W.
, and
Sharma,
D.
, 2012, “
A Unified Model for Support Vector Machine and Support Vector Data Description,” 2012 International Joint Conference on Neural Networks (IJCNN),
IEEE, pp. 1–8.

Vapnik,
V.
, 1995, The Nature of Statistical Learning Theory,
Springer,
New York.

Scholkopf,
B.
, and
Smola,
J. A.
, 2002, Learning With Kernels,
MIT Press,
Cambridge, MA.

Malak,
J. R. J.
, and
Paredis,
C. J. J.
, 2010, “
Using Support Vector Machines to Formalize the Valid Input Domain of Predictive Models in Systems Design Problems,” ASME J. Mech. Des.,
132(10), p. 101001.

[CrossRef]
Scholkopf,
B.
,
Williamson,
R.
,
Smola,
A.
,
Shawe-Taylor,
J.
, and
Platt,
J.
, 1999, “
Support Vector Method for Novelty Detection,” Advances in Neural Information Processing Systems,
MIT Press, pp. 582–588.

Wolfe,
P.
, 1961, “
A Duality Theorem for Nonlinear Programming,” Q. Appl. Math.,
19(3), pp. 239–244.

Cauwenberghs,
G.
, and
Poggio,
T.
, 2001, “
Incremental and Decremental Support Vector Machine Learning,” Neural Information Processing Systems,
13, pp. 409–415.

MathWorks, 1998, “
Mathworks User's Guide,” Vol. 5, MathWorks Inc., Natick, MA, p. 333.

Tax,
D.
, 2005, “
Ddtools: The Data Description Toolbox for Matlab,” Delft University of Technology, Delft, Netherlands.

Tax,
D. M.
, 2015, “
Ddtools: The Data Description Toolbox for Matlab, Version 2.1.2,” Delft University of Technology, Delft, Netherlands.

Powers,
D. M.
, 2011, “
Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness and Correlation,” J. Mach. Learn. Technol.,
2(1), pp. 37–63.