Kennedy,
M. C.
, and
O'Hagan,
A.
, 2001, “
Bayesian Calibration of Computer Models,” J. R. Stat. Soc. Ser. B,
63(3), pp. 425–450.

[CrossRef]
Apley,
D. W.
,
Liu,
J.
, and
Chen,
W.
, 2006, “
Understanding the Effects of Model Uncertainty in Robust Design With Computer Experiments,” ASME J. Mech. Des.,
128(4), pp. 945–958.

[CrossRef]
Kennedy,
M. C.
, and
O'Hagan,
A.
, 2000, “
Predicting the Output From a Complex Computer Code When Fast Approximations Are Available,” Biometrika,
87(1), pp. 1–13.

[CrossRef]
Hasselman,
T. K.
,
Yap,
K.
,
Lin,
C.-H.
, and
Cafeo,
J. A.
, 2005, “
A Case Study in Model Improvement for Vehicle Crashworthiness Simulation,” 23rd International Modal Analysis Conference, Orlando, FL, pp. 1–12.

Chen,
W.
,
Xiong,
Y.
,
Tsui,
K.-L.
, and
Wang,
S.
, 2008, “
A Design-Driven Validation Approach Using Bayesian Prediction Models,” ASME J. Mech. Des.,
130(2), p. 021101.

[CrossRef]
Qian,
P. Z. G.
, and
Wu,
C. F. J.
, 2008, “
Bayesian Hierarchical Modeling for Integrating Low-Accuracy and High-Accuracy Experiments,” Technometrics,
50(2), pp. 192–204.

[CrossRef]
Wang,
S. C.
,
Chen,
W.
, and
Tsui,
K. L.
, 2009, “
Bayesian Validation of Computer Models,” Technometrics,
51(4), pp. 439–451.

[CrossRef]
Jiang,
Z.
,
Chen,
W.
,
Fu,
Y.
, and
Yang,
R.-J.
, 2013, “
Reliability-Based Design Optimization With Model Bias and Data Uncertainty,” SAE Int. J. Mater. Manuf.,
6(3), pp. 502–516.

[CrossRef]
Helton,
J. C.
,
Johnson,
J. D.
,
Sallaberry,
C. J.
, and
Storlie,
C. B.
, 2006, “
Survey of Sampling-Based Methods for Uncertainty and Sensitivity Analysis,” Reliab. Eng. Syst. Saf.,
91(10–11), pp. 1175–1209.

[CrossRef]
Landau,
D. P.
, and
Binder,
K.
, 2005, A Guide to Monte Carlo Simulations in Statistical Physics, 2nd ed.,
Cambridge University Press,
New York.

Robert,
C.
, and
Casella,
G.
, 1999, Monte Carlo Statistical Methods,
Springer,
New York.

Green,
L. L.
,
Lin,
H.-Z.
, and
Khalessi,
M. R.
, 2002, “
Probabilistic Methods for Uncertainty Propagation Applied to Aircraft Design,” AIAA Paper No. 2002-3140.

Cao,
H.
, and
Duan,
B.
, 2004, “
Uncertainty Analysis for Multidisciplinary Systems Based on Convex Models,” AIAA Paper No. 2004-4504.

Du,
X.
,
Guo,
J.
, and
Beeram,
H.
, 2008, “
Sequential Optimization and Reliability Assessment for Multidisciplinary Systems Design,” Struct. Multidiscip. Optim.,
35(2), pp. 117–130.

[CrossRef]
Guo,
J.
, and
Du,
X.
, 2010, “
Reliability Analysis for Multidisciplinary Systems With Random and Interval Variables,” AIAA J.,
48(1), pp. 82–91.

[CrossRef]
Gu,
X.
, and
Renaud,
J. E.
, 2002, “
Implementation Study of Implicit Uncertainty Propagation (IUP) in Decomposition-Based Optimization,” AIAA Paper No. 2002-5416.

Gu,
X. S.
,
Renaud,
J. E.
, and
Penninger,
C. L.
, 2006, “
Implicit Uncertainty Propagation for Robust Collaborative Optimization,” ASME J. Mech. Des.,
128(4), pp. 1001–1013.

[CrossRef]
Du,
X.
, and
Chen,
W.
, 2002, “
Collaborative Reliability Analysis for Multidisciplinary Systems Design,” AIAA Paper No. 2002-5474.

Du,
X.
, and
Chen,
W.
, 2005, “
Collaborative Reliability Analysis Under the Framework of Multidisciplinary Systems Design,” Optim. Eng.,
6(1), pp. 63–84.

[CrossRef]
Xiong,
F.
,
Yin,
X.
,
Chen,
W.
, and
Yang,
S.
, 2010, “
Enhanced Probabilistic Analytical Target Cascading With Application to Multi-Scale Design,” Eng. Optim.,
42(6), pp. 581–592.

[CrossRef]
Sankararaman,
S.
, and
Mahadevan,
S.
, 2012, “
Likelihood-Based Approach to Multidisciplinary Analysis Under Uncertainty,” ASME J. Mech. Des.,
134(3), p. 031008.

[CrossRef]
Liang,
C.
, and
Mahadevan,
S.
, 2013, “
Stochastic Multidisciplinary Analysis With High Dimensional Coupling,” 10th World Congress on Structural and Multidisciplinary Optimization, Orlando, FL, May 19–24, pp. 1–6.

Du,
X.
, and
Chen,
W.
, 2000, “
An Efficient Approach to Probabilistic Uncertainty Analysis in Simulation-Based Multidisciplinary Design,” AIAA Paper No. 2000-0423.

Du,
X.
, and
Chen,
W.
, 2000, “
Methodology for Managing the Effect of Uncertainty in Simulation-Based Design,” AIAA J.,
38(8), pp. 1471–1478.

[CrossRef]
Du,
X.
, and
Chen,
W.
, 2002, “
Efficient Uncertainty Analysis Methods for Multidisciplinary Robust Design,” AIAA J.,
40(3), pp. 545–552.

[CrossRef]
Jiang,
X. M.
, and
Mahadevan,
S.
, 2009, “
Bayesian Hierarchical Uncertainty Quantification by Structural Equation Modeling,” Int. J. Numer. Methods Eng.,
80(6–7), pp. 717–737.

[CrossRef]
Jiang,
X. M.
, and
Mahadevan,
S.
, 2009, “
Bayesian Structural Equation Modeling Method for Hierarchical Model Validation,” Reliab. Eng. Syst. Saf.,
94(4), pp. 796–809.

[CrossRef]
Sankararaman,
S.
,
McLemore,
K.
,
Mahadevan,
S.
,
Bradford,
S. C.
, and
Peterson,
L. D.
, 2013, “
Test Resource Allocation in Hierarchical Systems Using Bayesian Networks,” AIAA J.,
51(3), pp. 537–550.

[CrossRef]
Manring,
N. D.
, 2003, “
Sensitivity Analysis of the Conical-Shaped Equivalent Model of a Bolted Joint,” ASME J. Mech. Des.,
125(3), pp. 642–646.

[CrossRef]
Allaire,
D.
,
He,
Q.
,
Deyst,
J.
, and
Willcox,
K.
, 2012, “
An Information-Theoretic Metric of System Complexity With Application to Engineering System Design,” ASME J. Mech. Des.,
134(10), p. 100906.

[CrossRef]
Jiang,
Z.
,
Chen,
W.
, and
German,
B. J.
, 2014, “
Statistical Sensitivity Analysis Considering Both Aleatory and Epistemic Uncertainties in Multidisciplinary Design,” AIAA Paper No. 2014-2870.

Jiang,
Z.
,
Chen,
W.
, and
German,
B. J.
, 2016, “
Multidisciplinary Statistical Sensitivity Analysis Considering Both Aleatory and Epistemic Uncertainties,” AIAA J.,
54(4), pp. 1326–1338.

[CrossRef]
Jiang,
Z.
,
Li,
W.
,
Apley,
D. W.
, and
Chen,
W.
, 2014, “
A System Uncertainty Propagation Approach With Model Uncertainty Quantification in Multidisciplinary Design,” ASME Paper No. DETC2014-34708.

Jiang,
Z.
,
Li,
W.
,
Apley,
D. W.
, and
Chen,
W.
, 2015, “
A Spatial-Random-Process Based Multidisciplinary System Uncertainty Propagation Approach With Model Uncertainty,” ASME J. Mech. Des.,
137(10), p. 101402.

[CrossRef]
Picheny,
V.
,
Ginsbourger,
D.
,
Roustant,
O.
,
Haftka,
R. T.
, and
Kim,
N. H.
, 2010, “
Adaptive Designs of Experiments for Accurate Approximation of a Target Region,” ASME J. Mech. Des.,
132(7), p. 071008.

[CrossRef]
Liu,
Y.
,
Shi,
Y.
,
Zhou,
Q.
, and
Xiu,
R.
, 2016, “
A Sequential Sampling Strategy to Improve the Global Fidelity of Metamodels in Multi-Level System Design,” Struct. Multidiscip. Optim.,
53(6), pp. 1295–1313.

[CrossRef]
Jones,
D. R.
,
Schonlau,
M.
, and
Welch,
W. J.
, 1998, “
Efficient Global Optimization of Expensive Black-Box Functions,” J. Global Optim.,
13(4), pp. 455–492.

[CrossRef]
Schonlau,
M.
,
Welch,
W. J.
, and
Jones,
D. R.
, 1998, Global Versus Local Search in Constrained Optimization of Computer Models (Lecture Notes—Monograph Series, Vol.
34),
Institute of Mathematical Statistics,
Bethesda, MD, pp. 11–25.

Arendt,
P. D.
,
Apley,
D. W.
, and
Chen,
W.
, 2013, “
Objective-Oriented Sequential Sampling for Simulation Based Robust Design Considering Multiple Sources of Uncertainty,” ASME J. Mech. Des.,
135(5), p. 051005.

[CrossRef]
Sacks,
J.
,
Welch,
W. J.
,
Mitchell,
T. J.
, and
Wynn,
H. P.
, 1989, “
Design and Analysis of Computer Experiments,” Stat. Sci.,
4(4), pp. 409–423.

[CrossRef]
Rasmussen,
C. E.
, and
Williams,
C. K. I.
, 2006, Gaussian Processes for Machine Learning,
The MIT Press,
Cambridge, MA.

Sobol',
I. M.
, 1990, “
On Sensitivity Estimation for Nonlinear Mathematical Models,” Mat. Model.,
2(1), pp. 112–118 (in Russian).

Sobol',
I. M.
, 2001, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates,” Math. Comput. Simul.,
55(1–3), pp. 271–280.

[CrossRef]
Arendt,
P. D.
, 2012, “
Quantification and Mitigation of Multiple Sources of Uncertainty in Simulation Based Design,” Ph.D. dissertation, Mechanical Engineering, Northwestern University, Evanston, IL.

Arendt,
P. D.
,
Apley,
D. W.
, and
Chen,
W.
, 2016, “
A Preposterior Analysis to Predict Identifiability in Experimental Calibration of Computer Models,” IIE Trans.,
48(1), pp. 75–88.

Renaud,
J. E.
, and
Gabriele,
G. A.
, 1994, “
Approximation in Nonhierarchic System Optimization,” AIAA J.,
32(1), pp. 198–205.

[CrossRef]
Padula,
S. L.
,
Alexandrov,
N.
, and
Green,
L. L.
, 1996, “
MDO Test Suite at NASA Langley Research Center,” AIAA Paper No. 96-4028.

Kodiyalam,
S.
, and
Sobieszczanski-Sobieski,
J.
, 2001, “
Multidisciplinary Design Optimization—Some Formal Methods, Framework Requirements, and Application to Vehicle Design,” Int. J. Veh. Des.,
25(1–2), pp. 3–22.

[CrossRef]