Research Papers: Design for Manufacture and the Life Cycle

Assembly Based Methods to Support Product Innovation in Design for Additive Manufacturing: An Exploratory Case Study

[+] Author and Article Information
Floriane Laverne

LCPI—Laboratoire de Conception de
Produits et Innovation,
Ecole Nationale Supérieure d'Arts et Métiers,
151 bd de l'Hôpital,
Paris 75013, France
e-mail: floriane.laverne@ensam.eu

Frédéric Segonds

LCPI—Laboratoire de Conception de
Produits et Innovation,
Ecole Nationale Supérieure d'Arts et Métiers,
151 bd de l'Hôpital,
Paris 75013, France
e-mail: frederic.segonds@ensam.eu

Nabil Anwer

LURPA—Laboratoire Universitaire de Recherche
en Production Automatisée,
Ecole Normale Supérieure de Cachan,
61 av du Président Wilson,
Cachan Cedex 94235, France
e-mail: anwer@lurpa.ens-cachan.fr

Marc Le Coq

LCPI—Laboratoire de Conception de
Produits et Innovation,
Ecole Nationale Supérieure d'Arts et Métiers,
151 bd de l'Hôpital,
Paris 75013, France
e-mail: marc.lecoq@ensam.eu

Contributed by the Design for Manufacturing Committee of ASME for publication in the JOURNAL OF MECHANICAL DESIGN. Manuscript received February 14, 2015; final manuscript received September 1, 2015; published online October 16, 2015. Assoc. Editor: David Rosen.

J. Mech. Des 137(12), 121701 (Oct 16, 2015) (8 pages) Paper No: MD-15-1110; doi: 10.1115/1.4031589 History: Received February 14, 2015; Revised September 01, 2015

Additive manufacturing (AM) is emerging as an important manufacturing process and a key technology for enabling innovative product development. Design for additive manufacturing (DFAM) is nowadays a major challenge to exploit properly the potential of AM in product innovation and product manufacturing. However, in recent years, several DFAM methods have been developed with various design purposes. In this paper, we first present a state-of-the-art overview of the existing DFAM methods, then we introduce a classification of DFAM methods based on intermediate representations (IRs) and product's systemic level, and we make a comparison focused on the prospects for product innovation. Furthermore, we present an assembly based DFAM method using AM knowledge during the idea generation process in order to develop innovative architectures. A case study demonstrates the relevance of such approach. The main contribution of this paper is an early DFAM method consisting of four stages as follows: choice and development of (1) concepts, (2) working principles, (3) working structures, and (4) synthesis and conversion of the data in design features. This method will help designers to improve their design features, by taking into account the constraints of AM in the early stages.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.


Perrin, J. , 2001, Concevoir L'innovation Industrielle: Méthodologie de Conception de L'innovation, CNRS, Paris.
Kelly, P. , and Kranzberg, M. , 1978, Technological Innovation: A Critical Review of Current Knowledge, San Francisco Press, San Francisco, CA.
Schmitt, L. , Buisine, S. , Chaboissier, J. , Aoussat, A. , and Vernier, F. , 2012, “ Dynamic Tabletop Interfaces for Increasing Creativity,” Comput. Hum. Behav., 28(5), pp. 1892–1901. [CrossRef]
Tödtling, F. , Lehner, P. , and Kaufmann, A. , 2009, “ Do Different Types of Innovation Rely on Specific Kinds of Knowledge Interactions?” Technovation, 29(1), pp. 59–71. [CrossRef]
Teece, D. J. , 1986, “ Profiting From Technological Innovation: Implications for Integration, Collaboration, Licensing and Public Policy,” Res. Policy, 15(6), pp. 285–305. [CrossRef]
ASTM, 2012, “ Standard Terminology for Additive Manufacturing Technologies,” ASTM F2792-12a.
Culverhouse, P. F. , 1995, “ Constraining Designers and Their CAD Tools,” Des. Stud., 16(1), pp. 81–101. [CrossRef]
Hague, R. , Campbell, I. , and Dickens, P. , 2003, “ Implications on Design of Rapid Manufacturing,” J. Mech. Eng. Sci., 217(1), pp. 25–30. [CrossRef]
Rosen, D. W. , 2007, “ Computer-Aided Design for Additive Manufacturing of Cellular Structures,” Comput. Aided Des. Appl., 4(5), pp. 585–594.
Gibson, I. , Rosen, D. R. , and Stucker, B. , 2010, Additive Manufacturing Technologies, Springer US, New York.
Tomiyama, T. , Gu, P. , Jin, Y. , Lutters, D. , Kind, C. , and Kimura, F. , 2009, “ Design Methodologies: Industrial and Educational Applications,” CIRP Ann. Manuf. Technol., 58(2), pp. 543–565. [CrossRef]
Pahl, G. , and Beitz, W. , 2007, Engineering Design—A Systematic Approach, 3rd ed., Springer, London, UK.
Vayre, B. , Vignat, F. , and Villeneuve, F. , 2012, “ Designing for Additive Manufacturing,” CIRP Conference on Manufacturing Systems, pp. 632–637.
Yang, S. , and Zhao, Y. , 2015, “ Additive Manufacturing-Enabled Design Theory and Methodology: A Critical Review,” Int. J. Adv. Manuf. Technol., 80(1), pp. 327–342. [CrossRef]
Ullman, D. G. , and Jones, E. A. , 2003, The Mechanical Design Process, McGraw-Hill Higher Education, New York.
Ishii, K. , 1995, “ Life-Cycle Engineering Design,” ASME J. Vib. Acoust., 117(B), pp. 42–47. [CrossRef]
Wang, L. , Shen, W. , Xie, H. , Neelamkavil, J. , and Pardasani, A. , 2002, “ Collaborative Conceptual Design: State of the Art and Future Trends,” Comput. Aided Des., 34(13), pp. 981–996. [CrossRef]
Garetti, M. , Terzi, S. , Bertacci, N. , and Brianza, M. , 2005, “ Organisational Change and Knowledge Management in PLM Implementation,” Int. J. Prod. Lifecycle Manage., 1(1), pp. 43–51. [CrossRef]
Sharma, A. , 2005, “ Collaborative Product Innovation: Integrating Elements of CPI Via PLM Framework,” Comput. Aided Des., 37(13), pp. 1425–1434. [CrossRef]
Huang, G. Q. , 1996, Design for X—Concurrent Engineering Imperatives, Chapman & Hall, London.
Bouchard, C. , Camous, R. , and Aoussat, A. , 2005, “ Nature and Role of Intermediate Representations (IR) in the Design Process: Case Studies in Car Design,” Int. J. Veh. Des., 38(1), pp. 1–25. [CrossRef]
Pei, E. , Campbell, I. , and Evans, M. , 2011, “ A Taxonomic Classification of Visual Design Representations Used by Industrial Designers and Engineering Designers,” Des. J., 14(1), pp. 64–91.
Kuo, T. C. , Huang, S. H. , and Zhang, H. C. , 2001, “ Design for Manufacture and Design for ‘X’: Concepts, Applications, and Perspectives,” Comput. Ind. Eng., 41(3), pp. 241–260. [CrossRef]
Bourell, D. L. , Leu, M. C. , and Rosen, D. W. , 2009, “ Roadmap for Additive Manufacturing—Identifying the Future of Freeform Processing,” Technical Report, The University of Texas at Austin, Austin, TX.
Fey, N. P. , South, B. J. , Seepersad, C. C. , and Neptune, R. R. , 2009, “ Topology Optimization and Freeform Fabrication Framework for Developing Prosthetic Feet,” Solid Freeform Fabrication Symposium, pp. 607–619.
Gardan, N. , and Schneider, A. , “ Topological Optimization of Internal Patterns and Support in Additive Manufacturing,” J. Manuf. Syst., (in press).
Chu, C. , Graf, G. , and Rosen, D. W. , 2008, “ Design for Additive Manufacturing of Cellular Structures,” Comput. Aided Des. Appl., 5(5), pp. 686–696.
Emmelmann, C. , Sander, P. , Kranz, J. , and Wycisk, E. , 2011, “ Laser Additive Manufacturing and Bionics: Redefining Lightweight Design,” Phys. Procedia, 12(Pt. A), pp. 364–368. [CrossRef]
Gerber, G. F. , and Barnard, L. J. , 2008, “ Designing for Laser Sintering,” J. New Gener. Sci., 6, pp. 47–59.
Bin Maidin, S. , Campbell, I. , and Pei, E. , 2012, “ Development of a Design Feature Database to Support Design for Additive Manufacturing,” Assem. Autom., 32(3), pp. 235–244. [CrossRef]
Lokesh, K. , and Jain, P. K. , 2010, “ Selection of Rapid Prototyping Technology,” Adv. Prod. Eng. Manage., 5(2), pp. 74–134.
Byun, H. , and Lee, K. , 2005, “ A Decision Support System for the Selection of a Rapid Prototyping Process Using the Modified TOPSIS Method,” Int. J. Adv. Manuf. Technol., 26(11), pp. 1338–1347. [CrossRef]
Alexander, P. , Allen, S. , and Dutta, D. , 1998, “ Part Orientation and Build Cost Determination in Layered Manufacturing,” Comput. Aided Des., 30(5), pp. 343–356. [CrossRef]
Ruffo, M. , and Hague, R. , 2007, “ Cost Estimation for Rapid Manufacturing—Simultaneous Production of Mixed Components Using Laser Sintering,” J. Eng. Manuf., 221(11), pp. 1585–1591. [CrossRef]
Atzeni, E. , and Salmi, A. , 2012, “ Economics of Additive Manufacturing for End-Usable Metal Parts,” Int. J. Adv. Manuf. Technol., 62(9), pp. 1147–1155. [CrossRef]
Childs, T. H. C. , and Juster, N. P. , 1994, “ Linear and Geometric Accuracies From Layer Manufacturing,” CIRP Ann. Manuf. Technol., 43(1), pp. 163–166. [CrossRef]
Hopkinson, N. , and Dickens, P. M. , 2001, “ Rapid Prototyping for Direct Manufacture,” Rapid Prototyping J., 7(4), pp. 197–202. [CrossRef]
Yim, S. , and Rosen, D. , 2012, “ Build Time and Cost Models for Additive Manufacturing Process Selection,” ASME Paper No. DETC2012-70940.
Williams, C. B. , Mistree, F. , and Rosen, D. W. , 2005, “ Towards the Design of a Layer-Based Additive Manufacturing Process for the Realization of Metal Parts of Designed Mesostructure,” Solid Freeform Fabrication Symposium, pp. 217–230.
Doubrovski, Z. , Verlinden, J. C. , and Geraedts, J. M. , 2011, “ Optimal Design for Additive Manufacturing: Opportunities and Challenges,” ASME Paper No. DETC2011-48131.
Reinhart, G. , and Teufelhart, S. , 2011, “ Load-Adapted Design of Generative Manufactured Lattice Structures,” Phys. Procedia, 12(Pt. A), pp. 385–392. [CrossRef]
Muller, P. , Mognol, P. , and Hascoet, J. , 2013, “ Modeling and Control of a Direct Laser Powder Deposition Process for Functionally Graded Materials (FGM) Parts Manufacturing,” J. Mater. Process. Technol., 213(5), pp. 685–692. [CrossRef]
Adam, G. A. O. , and Zimmer, D. , 2014, “ Design for Additive Manufacturing—Element Transitions and Aggregated Structures,” CIRP J. Manuf. Sci. Technol., 7(1), pp. 20–28. [CrossRef]
Kilburn, P. , 2012, Overview of Additive Manufacturing and Materials, CERN, Zurich, Switzerland, p. 76.
Ahn, S. H. , Montero, M. , Odell, D. , Roundy, S. , and Wright, P. K. , 2002, “ Anisotropic Material Properties of Fused Deposition Modeling ABS,” Rapid Prototyping J., 8(4), pp. 248–257. [CrossRef]
Ahn, D. , Kim, H. , and Lee, S. , 2007, “ Fabrication Direction Optimization to Minimize Post-Machining in Layered Manufacturing,” Int. J. Mach. Tools Manuf., 47(3–4), pp. 593–606. [CrossRef]
Boyard, N. , Rivette, M. , Christmann, O. , and Richir, S. , 2013, “ A Design Methodology for Parts Using Additive Manufacturing,” International Conference on Advanced Research in Virtual and Rapid Prototyping, Leiria, Portugal, Oct. 1–5, pp. 399–404.
Vitse, M. , Laverne, F. , Segonds, F. , Ratgras, S. , L. Pellat Finet , and Yantio, G. , 2014, “ Fabrication Additive: Integration du DFAM Pour la Conception Petites et Moyennes Séries Dans le Domaine Aerospatial,” CONFERE'14, Sibenik, Croatia, p. 8.
Rodrigue, H. , and Rivette, M. , 2010, “ An Assembly-Level Design for Additive Manufacturing Methodology,” IDMME—Virtual Concept 2010, Bordeaux, France, p. 9.
Ponche, R. , Kerbrat, O. , Mognol, P. , and Hascoet, J. , 2014, “ A Novel Methodology of Design for Additive Manufacturing Applied to Additive Laser Manufacturing Process,” Rob. Comput. Integr. Manuf., 30(4), pp. 389–398. [CrossRef]
Alimardani, M. , Toyserkani, E. , and Huissoon, J. P. , 2007, “ A 3D Dynamic Numerical Approach for Temperature and Thermal Stress Distributions in Multilayer Laser Solid Freeform Fabrication Process,” Opt. Lasers Eng., 45(12), pp. 1115–1130. [CrossRef]
Chan, C. K. , and Tan, S. T. , 2005, “ Volume Decomposition of CAD Models for Rapid Prototyping Technology,” Rapid Prototyping J., 11(4), pp. 221–234. [CrossRef]
Choi, J. , and Chang, Y. , 2005, “ Characteristics of Laser Aided Direct Metal/Material Deposition Process for Tool Steel,” Int. J. Mach. Tools Manuf., 45(4–5), pp. 597–607. [CrossRef]
Rafi, H. K. , Starr, T. L. , and Stucker, B. E. , 2013, “ A Comparison of the Tensile, Fatigue, and Fracture Behavior of Ti–6Al–4V and 15-5 PH Stainless Steel Parts Made by Selective Laser Melting,” Int. J. Adv. Manuf. Technol., 69(5), pp. 1299–1309. [CrossRef]
Brackett, D. , Ashcroft, I. , and Hague, R. , 2011, “ Topology Optimization for Additive Manufacturing,” 24th Solid Freeform Fabrication Symposium, pp. 6–8.
Maheshwaraa, U. , Seepersad, C. , and Bourell, D. L. , 2007, “ Design and Freeform Fabrication of Deployable Structures With Lattice Skins,” Rapid Prototyping J., 13(4), pp. 213–225. [CrossRef]
Laverne, F. , Segonds, F. , Anwer, N. , and Le Coq, M. , 2015, “ Conception Pour la Fabrication Additive: Un état de l'art,” AIP PRIMECA'15, La Plagne, France, p. 7.
Anwer, N. , Ballu, A. , and Mathieu, L. , 2013, “ The Skin Model, a Comprehensive Geometric Model for Engineering Design,” CIRP Ann. Manuf. Technol., 62(1), pp. 143–146. [CrossRef]
ISO, 2009, Systèmes de Management de la Qualité: Principes Essentiels et Vocabulaire, AFNOR, Paris.
Savransky, S. D. , 2000, Engineering of Creativity: Introduction to TRIZ Methodology of Inventive Problem Solving, CRC Press, New York.
Henderson, R. M. , and Clark, K. B. , 1990, “ Architectural Innovation: The Reconfiguration of Existing Product Technologies and the Failure of Established Firms,” Adm. Sci. Q., 35(1), pp. 9–30. [CrossRef]
Skander, A. , Roucoules, L , and Klein Meyer, J. S. , 2008, “ Design and Manufacturing Interface Modelling for Manufacturing Processes Selection and Knowledge Synthesis in Design,” Int. J. Adv. Manuf. Technol., 37(5), pp. 443–454. [CrossRef]
Otto, K. N. , and Wood, K. L. , 2003, Product Design—Techniques in Reverse Engineering and New Product Development, Prentice Hall, Upper Saddle River, NJ.
Ponche, R. , 2013, “ Methodologie de Conception Pour la Fabrication Additive, Application à la Projection de Poudres,” Thèse de doctorat, IRCCyN, UMR CNRS 6597, École Centrale de Nantes, Nantes, France.
Ulrich, K. , 1995, “ The Role of Product Architecture in the Manufacturing Firm,” Res. Policy, 24(3), pp. 419–440. [CrossRef]
Kalyanasundaram, V. , and Lewis, K. , 2014, “ A Function Based Approach for Product Integration,” ASME J. Mech. Des., 136(4), p. 041002. [CrossRef]
Howard, T. J. , Culley, S. J. , and Dekoninck, E. , 2008, “ Describing the Creative Design Process by the Integration of Engineering Design and Cognitive Psychology Literature,” Des. Stud., 29(2), pp. 160–180. [CrossRef]
Shah, J. J. , Kulkarni, S. V. , and Vargas-Hernandez, N. , 2000, “ Evaluation of Idea Generation Methods for Conceptual Design: Effectiveness Metrics and Design of Experiments,” ASME J. Mech. Des., 122(4), pp. 377–384. [CrossRef]
Cross, N. , 2008, Engineering Design Methods: Strategies for Product Design, Wiley, Chichester, UK.
Broberg, O. , 1997, “ Integrating Ergonomics Into the Product Development Process,” Int. J. Ind. Ergonom., 19(4), pp. 317–327. [CrossRef]
Curral, L. A. , Forrester, R. H. , Dawson, J. F. , and West, M. A. , 2001, “ It's What You Do and the Way That You Do It: Team Task, Team Size, and Innovation-Related Group Processes,” Eur. J. Work Organ. Psychol., 10(2), pp. 187–204. [CrossRef]
Moreland, R. L. , Levine, J. M. , and Wingert, M. L. , 1996, “ Creating the Ideal Group: Composition Effects at Work,” Understanding Group Behavior, Vol. 2, E. Witte and J. H. Davis , eds., pp. 11–35.
Linsey, J. S. , Green, M. G. , Murphy, J. , Wood, K. L. , and Markman, A. B. , 2005, “ ‘Collaborating to Success': An Experimental Study of Group Idea Generation Techniques,” ASME Paper No. DETC2005-85351.
Helms, M. , Vattam, S. S. , and Goel, A. K. , 2009, “ Biologically Inspired Design: Process and Products,” Des. Stud., 30(5), pp. 606–622. [CrossRef]
Bonnardel, N. , and Bouchard, C. , 2014, “ Design, Ergonomics and User Interfaces: Complementary and Interdisciplinary Studies to Enhance Creative Activities,” Ergonomie et Informatique Avancée Conference, Bidart-Biarritz, France, ACM, New York, pp. 2–10.
Mougenot, C. , Watanabe, K. , Bouchard, C. , and Aoussat, A. , 2009, “ Visual Materials and Designers' Cognitive Activity: Towards In-Depth Investigations of Design Cognition,” International Association of Societies of Design Research, Seoul, South Korea.
Schon, D. , 1992, “ Designing as Reflective Conversation With the Materials of a Design Situation,” Res. Eng. Des., 3(3), pp. 131–147. [CrossRef]
Mann, D. , and Dewulf, S. , 2001, “ Evolving the World's Systematic Creativity Methods,” 7th European Association for Creativity and Innovation Conference, p. 9.


Grahic Jump Location
Fig. 2

Workflow of A-DFAM, adapted from Refs. [47] and [48]

Grahic Jump Location
Fig. 1

Synthesis and distribution of the DFAM practices

Grahic Jump Location
Fig. 3

Workflow of C-DFAM, adapted from Refs. [64] and [56]

Grahic Jump Location
Fig. 4

Details of the eA-DFAM method and position of the case study

Grahic Jump Location
Fig. 5

Protocol and productions of the case study

Grahic Jump Location
Fig. 6

Proposal of optimized eA-DFAM



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In