Bickels,
J.
,
Malawer,
M. M.
,
Meller,
I.
,
Kollender,
Y.
,
Rubert,
K. M.
, and
Henshaw,
R. M.
, 1999, “
Proximal and Total Femur Resections With Endoprosthetic Reconstruction,” 10th International Symposium of the International Society of Limb Salvage (ISOLS).

Hoell,
S.
,
Butschek,
S.
,
Gosheger,
G.
,
Dedy,
N.
,
Dieckmann,
R.
,
Henrichs,
M.
,
Daniilidis,
K.
, and
Hardes,
J.
, 2011, “
Intramedullary and Total Femur Replacement in Revision Arthroplasty as a Last Limb-Saving Option: Is There Any Benefit From the Less Invasive Intramedullary Replacement?,” J. Bone Jt. Surg. Br.,
93-B(11), pp. 1545–1549.

[CrossRef]
Sumner,
D. R.
, and
Galante,
J. O.
, 1992, “
Determinants of Stress Shielding: Design Versus Materials Versus Interface,” Clin. Orthop. Relat. Res.,
274, pp. 79–96.

[PubMed]
Donati,
D.
,
Zavatta,
M.
,
Gozzi,
E.
,
Giacomini,
S.
,
Campanacci,
L.
, and
Mercuri,
M.
, 2001, “
Modular Prosthetic Replacement of the Proximal Femur After Resection of a Bone Tumour: A Long-Term Follow-Up,” J. Bone Jt. Surg.,
83-B, pp. 1156–1160.

[CrossRef]
Khanoki,
S. A.
, and
Pasini,
D.
, 2013, “
Fatigue Design of a Mechanically Biocompatible Lattice for a Proof-of-Concept Femoral Stem,” J. Mech. Behav. Biomed. Mater.,
22, pp. 65–83.

[CrossRef] [PubMed]
Khanoki,
S. A.
, and
Pasini,
D.
, 2013, “
The Fatigue Design of a Bone Preserving Hip Implant With Functionally Graded Cellular Material,” ASME J. Med. Devices.,
7(2), p. 020907.

[CrossRef]
Khanoki,
S. A.
, and
Pasini,
D.
, 2012, “
Multiscale Design and Multiobjective Optimization of Orthopedic Hip Implants With Functionally Graded Cellular Material,” ASME J. Biomech. Eng.,
134(3), p. 031004.

[CrossRef]
Zhu,
X. H.
,
He,
G.
, and
Gao,
B. Z.
, 2005, “
The Application of Topology Optimization on the Quantitative Description of the External Shape of Bone Structure,” J. Biomech.,
38, pp. 1612–1620.

[CrossRef] [PubMed]
Nowak,
M.
, 2006, “
Structural Optimization System Based on Trabecular Bone Surface Adaptation,” Struct. Multidiscip. Optim.,
32(3), pp. 241–249.

[CrossRef]
Bagge,
M.
, 2000, “
A Model of Bone Adaptation as an Optimization Process,” J. of Biomech.,
33(11), pp. 1349–1357.

[CrossRef]
Sutradhar,
A.
,
Paulino,
G. H.
,
Miller,
M. J.
, and
Nguyen,
T. H.
, 2010, “
Topological Optimization for Designing Patient-Specific Large Craniofacial Segmental Bone Replacements,” Proc. Natl. Acad. Sci.,
107(30), pp. 13222–13227.

[CrossRef]
Nicolella,
D. P.
,
Thacker,
B. H.
,
Katoozian,
H.
, and
Davy,
D. T.
, 2006, “
The Effect of Three-Dimensional Shape Optimization on the Probabilistic Response of a Cemented Femoral Hip Prosthesis,” J. Biomech.,
39(7), pp. 1265–1278.

[CrossRef] [PubMed]
Li,
G. Y.
,
Xu,
F.
,
Huang,
X. X. D.
, and
Sun,
G. Y.
, 2014, “
Topology Optimization of an Automotive Tailor-Welded Blank (TWB) Door,” ASME J. Mech. Des.,
137(5), p. 055001.

[CrossRef]
Yamada,
T.
,
Izui,
K.
, and
Nishiwaki,
S.
, 2011, “
A Level Set-Based Topology Optimization Method for Maximizing Thermal Diffusivity in Problems Including Design-Dependent Effects,” ASME J. Mech. Des.,
133(3), p. 031011.

[CrossRef]
Michell,
A.
, 1904, “
The Limits of Economy of Material in Frame Structures,” Philos. Mag.,
8(47), pp. 589–597.

[CrossRef]
Bendsøe,
M. P.
, and
Kikuchi,
N.
, 1988, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method,” CMAME,
71(2), pp. 197–224.

Bendsøe,
M. P.
, 1989, “
Optimal Shape Design as a Material Distribution Problem,” Struct. Optim.,
1(4), pp. 193–202.

[CrossRef]
Xie,
Y. M.
, and
Steven,
G. P.
, 1993, “
A Simple Evolutionary Procedure for Structural Optimization,” Comput. Struct.,
49(5), pp. 885–896.

[CrossRef]
Nishiwaki,
S.
,
Frecker,
M. I.
,
Min,
S.
, and
Kikuchi,
N.
, 1998, “
Topology Optimization of Compliant Mechanisms Using the Homogenization Method,” Int. J. Numer. Methods Eng.,
42(3), pp. 535–559.

[CrossRef]
Sigmund,
O.
, 2001, “
A 99 Line Topology Optimization Code Written in MATLAB,” Struct. Multidiscip. Optim.,
21(2), pp. 120–127.

[CrossRef]
Reynolds,
D.
,
McConnachie,
J.
,
Bettess,
P.
,
Christie,
W. C.
, and
Bull,
J. W.
, 1999, “
Reverse Adaptivity—A New Evolutionary Tool for Structural Optimization,” Int. J. Numer. Methods Eng.,
45(5), pp. 529–552.

[CrossRef]
Wang,
M. Y.
, and
Wang,
X. M.
, 2004, “
PDE-Driven Level Sets, Shape Sensitivity and Curvature Flow for Structural Topology Optimization,” Comput. Model. Eng. Sci.,
6(4), pp. 373–396.

Bendsøe,
M.
, and
Sigmund,
O.
, 2003, Topology Optimization: Theory, Methods and Applications,
Springer,
Berlin.

Osher,
S.
, and
Sethian,
J. A.
, 1988, “
Fronts Propagating With Curvature-Dependent Speed: Algorithms Based on Hamilton–Jacobi Formulations,” J. Comput. Phys.,
79(1), pp. 12–49.

[CrossRef]
Sethian,
J. A.
, and
Wiegmann,
A.
, 2000, “
Structural Boundary Design Via Level Set and Immersed Interface Methods,” J. Comput. Phys.,
163(2), pp. 489–528.

[CrossRef]
Osher,
S. J.
, and
Santosa,
F.
, 2001, “
Level Set Methods for Optimization Problems Involving Geometry and Constraints: I. Frequencies of a Two-Density Inhomogeneous Drum,” J. Comput. Phys.,
171(1), pp. 272–288.

[CrossRef]
Wang,
M. Y.
,
Wang,
X. M.
, and
Guo,
D.
, 2003, “
A Level Set Method for Structural Topology Optimization,” Comput. Methods Appl. Mech. Eng.,
192(1), pp. 227–246.

[CrossRef]
Allaire,
G.
,
Jouve,
F.
, and
Toader,
A.
, 2002, “
A Level-Set Method for Shape Optimization,” C. R. Math.,
334(12), pp. 1125–1130.

[CrossRef]
Allaire,
G.
,
Jouve,
F.
, and
Toader,
A.
, 2004, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method,” J. Comput. Phys.,
194(1), pp. 363–393.

[CrossRef]
Allaire,
G.
,
Gournay,
F. D.
,
Jouve,
F.
, and
Toader,
A.
, 2005, “
Structural Optimization Using Topological and Shape Sensitivity Via a Level Set Method,” Control Cybern.,
34, pp. 59–80.

Zhu,
B. L.
,
Zhang,
X. M.
, and
Fatikow,
S.
, 2014, “
A Velocity Predictor-Corrector Scheme in Level Set-Based Topology Optimization to Improve Computational Efficiency,” ASME J. Mech. Des.,
136(9), p. 091001.

[CrossRef]
Zhu,
B. L.
,
Zhang,
X. M.
, and
Fatikow,
S.
, 2014, “
Level Set-Based Topology Optimization of Hinge-Free Compliant Mechanisms Using a Two-Step Elastic Modeling Method,” ASME J. Mech. Des.,
136(3), p. 031007.

[CrossRef]
Wang,
S. Y.
, and
Wang,
M. Y.
, 2006, “
Radial Basis Functions and Level Set Method for Structural Topology Optimization,” Int. J. Numer. Methods Eng.,
65(12), pp. 2060–2090.

[CrossRef]
Wang,
S. Y.
,
Lim,
K. M.
,
Khoo,
B. C.
, and
Wang,
M. Y.
, 2007, “
An Extended Level Set Method for Shape and Topology Optimization,” J. Comput. Phys.,
221(1), pp. 395–421.

[CrossRef]
Luo,
Z.
,
Tong,
L. Y.
,
Wang,
M. Y.
, and
Wang,
S. Y.
, 2007, “
Shape and Topology Optimization of Compliant Mechanisms Using a Parameterization Level Set Method,” J. Comput. Phys.,
227(1), pp. 680–705.

[CrossRef]
Luo,
Z.
,
Wang,
M. Y.
,
Wang,
S. Y.
, and
Wei,
P.
, 2008, “
A Level Set-Based Parameterization Method for Structural Shape and Topology Optimization,” Int. J. Numer. Methods Eng.,
76(1), pp. 1–26.

[CrossRef]
Luo,
Z.
,
Tong,
L. Y.
, and
Kang,
Z.
, 2009, “
A Level Set Method for Structural Shape and Topology Optimization Using Radial Basis Functions,” Comput. Struct.,
87(7), pp. 425–434.

[CrossRef]
Wei,
P.
,
Wang,
M. Y.
, and
Xing,
X. H.
, 2010, “
A Study on X-Fem in Continuum Structural Optimization Using a Level Set Model,” Comput.-Aided Des.,
42(8), pp. 708–719.

[CrossRef]
Chen,
J.
,
Shapiro,
V.
,
Suresh,
K.
, and
Tsukanov,
I.
, 2007, “
Shape Optimization With Topological Changes and Parametric Control,” Int. J. Numer. Methods Eng.,
71(3), pp. 313–346.

[CrossRef]
Chen,
J.
,
Freytag,
M.
, and
Shapiro,
V.
, 2008, “
Shape Sensitivity of Constructively Represented Geometric Models,” Comput. Aided Geom. Des.,
25(7), pp. 470–488.

[CrossRef]
Chen,
S.
,
Wang,
M. Y.
, and
Liu,
A. Q.
, 2008, “
Shape Feature Control in Structural Topology Optimization,” Comput.-Aided Des.,
40(9), pp. 951–962.

[CrossRef]
Guo,
X.
,
Zhang,
W.
, and
Zhong,
W.
, 2014, “
Explicit Feature Control in Structural Topology Optimization Via Level Set Method,” Comput. Methods Appl. Mech. Eng.,
272, pp. 354–378.

[CrossRef]
Liu,
T.
,
Wang,
S. T.
,
Li,
B.
, and
Gao,
L.
, 2014, “
A Level-Set-Based Topology and Shape Optimization Method for Continuum Structure Under Geometric Constraints,” Struct. Multidiscip. Optim.,
50(2), pp. 253–273.

[CrossRef]
Liu,
T.
,
Li,
B.
,
Wang,
S. T.
, and
Gao,
L.
, 2014, “
Eigenvalue Topology Optimization of Structures Using a Parameterized Level Set Method,” Struct. Multidiscip. Optim.,
50(4), pp. 573–591.

[CrossRef]
Wang,
B.
, and
Cheng,
G.
, 2006, “
Design of Cellular Structure for Optimum Efficiency of Heat Dissipation,” IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials, Springer, Berlin, pp. 107–116.

Wendland,
H.
, 1995, “
Piecewise Polynomial, Positive Definite and Compactly Supported Radial Functions of Minimal Degree,” Adv. Comput. Math.,
4(1), pp. 389–396.

[CrossRef]
Schaback,
R.
, and
Wendland,
H.
, 2001, “
Characterization and Construction of Radial Basis Functions,” *Multivar. Approximation Appl.*, N. Dyn, D. Leviatan, D. Levin, and A. Pinkus, eds., Cambridge University Press, Cambridge, UK, pp. 1–24.

Hales,
T. C.
, 2007, “
The Jordan Curve Theorem, Formally and Informally,” Am. Math. Mon.,
114(10), pp. 882–894.

Shimrat,
M.
, 1962. “
Algorithm 112: Position of Point Relative to Polygon,” Commun. ACM,
5, pp. 446–451.

[CrossRef]
O'Searcoid,
M.
, 2006, Metric Spaces,
Springer,
Berlin.

Wang,
S.
, and
Wang,
M. Y.
, 2006, “
Radial Basis Functions and Level Set Method for Structural Topology Optimization,” Int. J. Numer. Methods Eng.,
65(12), pp. 2060–2090.

[CrossRef]
Dunavant,
D. A.
, 1985, “
High Degree Efficient Symmetrical Gaussian Quadrature Rules for the Triangle,” Int. J. Numer. Methods Eng.,
21(6), pp. 1129–1148.

[CrossRef]
Glassman,
A.
,
Bobyn,
J.
, and
Tanzer,
M.
, 2006, “
New Femoral Designs: Do They Influence Stress Shielding?,” Clin. Orthop. Relat. Res.,
453, pp. 64–74.

[CrossRef] [PubMed]
Huiskes,
R.
,
Weinans,
H.
, and
Van Rietbergen,
B.
, 1992, “
The Relationship Between Stress Shielding and Bone Resorption Around Total Hip Stems and the Effects of Flexible Materials,” Clin. Orthop. Relat. Res.,
274, pp. 124–134.

[PubMed]
Abdul-Kadir,
M. R.
,
Hansen,
U.
,
Klabunde,
R.
,
Lucas,
D.
, and
Amis,
A.
, 2008, “
Finite Element Modelling of Primary Hip Stem Stability: The Effect of Interference Fit,” J. Biomech.,
41(3), pp. 587–594.

[CrossRef] [PubMed]
Viceconti,
M.
,
Brusi,
G.
,
Pancanti,
A.
, and
Cristofolini,
L.
, 2006, “
Primary Stability of an Anatomical Cementless Hip Stem: A Statistical Analysis,” J. Biomech.,
39(7), pp. 1169–1179.

[CrossRef] [PubMed]
Viceconti,
M.
,
Monti,
L.
,
Muccini,
R.
,
Bernakiewicz,
M.
, and
Toni,
A.
, 2001, “
Even a Thin Layer of Soft Tissue May Compromise the Primary Stability of Cementless Hip Stems,” Clin. Biomech.,
16(9), pp. 765–775.

[CrossRef]
Benvenuti,
S.
,
Ceccanti,
F.
, and
De Kestelier,
X.
, 2013, “
Living on the Moon: Topological Optimization of a 3D-Printed Lunar Shelter,” NEXUS Network J.,
15(2), pp. 285–302.

[CrossRef]
Snelling,
D.
,
Li,
Q.
,
Meisel,
N.
,
Williams,
C. B.
,
Batra,
R. C.
, and
Druschitz,
A. P.
, 2015, “
Lightweight Metal Cellular Structures Fabricated Via 3D Printing of Sand Cast Molds,” Adv. Eng. Mater.,
17(7), pp. 923–932.

[CrossRef]
Gerstle,
T. L.
,
Ibrahim,
A. M. S.
,
Kim,
P. S.
,
Lee,
B. T.
, and
Lin,
S. J.
, 2014, “
A Plastic Surgery Application in Evolution: Three-Dimensional Printing,” Plast. Reconstr. Surg.,
133(2), pp. 446–451.

[CrossRef] [PubMed]