Research Papers: Design Automation

Topology Optimization of Total Femur Structure: Application of Parameterized Level Set Method Under Geometric Constraints

[+] Author and Article Information
Xiaowei Deng

Department of Structural Engineering,
University of California, San Diego,
La Jolla, CA 92093
e-mail: x8deng@eng.ucsd.edu

Yingjun Wang

Department of Structural Engineering,
University of California, San Diego,
La Jolla, CA 92093
e-mail: yiw009@eng.ucsd.edu

Jinhui Yan

Department of Structural Engineering,
University of California, San Diego,
La Jolla, CA 92093
e-mail: jiy071@eng.ucsd.edu

Tao Liu

Wuhan Heavy Duty Machine Tool,
Group Co., Ltd.,
Wuhan 430205, China
e-mail: tower.lau@qq.com

Shuting Wang

School of Mechanical Science and Engineering,
Huazhong University of Science and Technology,
Wuhan 430074, China
e-mail: wangst@mail.hust.edu.cn

1Corresponding author.

Contributed by the Design Automation Committee of ASME for publication in the JOURNAL OF MECHANICAL DESIGN. Manuscript received December 14, 2014; final manuscript received September 22, 2015; published online November 16, 2015. Assoc. Editor: James K. Guest.

J. Mech. Des 138(1), 011402 (Nov 16, 2015) (8 pages) Paper No: MD-14-1786; doi: 10.1115/1.4031803 History: Received December 14, 2014; Revised September 22, 2015

Optimization of the femur prosthesis is a key issue in femur replacement surgeries that provide a viable option for limb salvage rather than amputation. To overcome the drawback of the conventional techniques that do not support topology optimization of the prosthesis design, a parameterized level set method (LSM) topology optimization with arbitrary geometric constraints is presented. A predefined narrow band along the complex profile of the original femur is preserved by applying the contour method to construct the level set function, while the topology optimization is carried out inside the cavity. The Boolean R-function is adopted to combine the free boundary and geometric constraint level set functions to describe the composite level set function of the design domain. Based on the minimum compliance goal, three different designs of 2D femur prostheses subject to the target cavity fill ratios 34%, 54%, and 74%, respectively, are illustrated.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Bickels, J. , Malawer, M. M. , Meller, I. , Kollender, Y. , Rubert, K. M. , and Henshaw, R. M. , 1999, “ Proximal and Total Femur Resections With Endoprosthetic Reconstruction,” 10th International Symposium of the International Society of Limb Salvage (ISOLS).
Hoell, S. , Butschek, S. , Gosheger, G. , Dedy, N. , Dieckmann, R. , Henrichs, M. , Daniilidis, K. , and Hardes, J. , 2011, “ Intramedullary and Total Femur Replacement in Revision Arthroplasty as a Last Limb-Saving Option: Is There Any Benefit From the Less Invasive Intramedullary Replacement?,” J. Bone Jt. Surg. Br., 93-B(11), pp. 1545–1549. [CrossRef]
Sumner, D. R. , and Galante, J. O. , 1992, “ Determinants of Stress Shielding: Design Versus Materials Versus Interface,” Clin. Orthop. Relat. Res., 274, pp. 79–96. [PubMed]
Donati, D. , Zavatta, M. , Gozzi, E. , Giacomini, S. , Campanacci, L. , and Mercuri, M. , 2001, “ Modular Prosthetic Replacement of the Proximal Femur After Resection of a Bone Tumour: A Long-Term Follow-Up,” J. Bone Jt. Surg., 83-B, pp. 1156–1160. [CrossRef]
Khanoki, S. A. , and Pasini, D. , 2013, “ Fatigue Design of a Mechanically Biocompatible Lattice for a Proof-of-Concept Femoral Stem,” J. Mech. Behav. Biomed. Mater., 22, pp. 65–83. [CrossRef] [PubMed]
Khanoki, S. A. , and Pasini, D. , 2013, “ The Fatigue Design of a Bone Preserving Hip Implant With Functionally Graded Cellular Material,” ASME J. Med. Devices., 7(2), p. 020907. [CrossRef]
Khanoki, S. A. , and Pasini, D. , 2012, “ Multiscale Design and Multiobjective Optimization of Orthopedic Hip Implants With Functionally Graded Cellular Material,” ASME J. Biomech. Eng., 134(3), p. 031004. [CrossRef]
Zhu, X. H. , He, G. , and Gao, B. Z. , 2005, “ The Application of Topology Optimization on the Quantitative Description of the External Shape of Bone Structure,” J. Biomech., 38, pp. 1612–1620. [CrossRef] [PubMed]
Nowak, M. , 2006, “ Structural Optimization System Based on Trabecular Bone Surface Adaptation,” Struct. Multidiscip. Optim., 32(3), pp. 241–249. [CrossRef]
Bagge, M. , 2000, “ A Model of Bone Adaptation as an Optimization Process,” J. of Biomech., 33(11), pp. 1349–1357. [CrossRef]
Sutradhar, A. , Paulino, G. H. , Miller, M. J. , and Nguyen, T. H. , 2010, “ Topological Optimization for Designing Patient-Specific Large Craniofacial Segmental Bone Replacements,” Proc. Natl. Acad. Sci., 107(30), pp. 13222–13227. [CrossRef]
Nicolella, D. P. , Thacker, B. H. , Katoozian, H. , and Davy, D. T. , 2006, “ The Effect of Three-Dimensional Shape Optimization on the Probabilistic Response of a Cemented Femoral Hip Prosthesis,” J. Biomech., 39(7), pp. 1265–1278. [CrossRef] [PubMed]
Li, G. Y. , Xu, F. , Huang, X. X. D. , and Sun, G. Y. , 2014, “ Topology Optimization of an Automotive Tailor-Welded Blank (TWB) Door,” ASME J. Mech. Des., 137(5), p. 055001. [CrossRef]
Yamada, T. , Izui, K. , and Nishiwaki, S. , 2011, “ A Level Set-Based Topology Optimization Method for Maximizing Thermal Diffusivity in Problems Including Design-Dependent Effects,” ASME J. Mech. Des., 133(3), p. 031011. [CrossRef]
Michell, A. , 1904, “ The Limits of Economy of Material in Frame Structures,” Philos. Mag., 8(47), pp. 589–597. [CrossRef]
Bendsøe, M. P. , and Kikuchi, N. , 1988, “ Generating Optimal Topologies in Structural Design Using a Homogenization Method,” CMAME, 71(2), pp. 197–224.
Bendsøe, M. P. , 1989, “ Optimal Shape Design as a Material Distribution Problem,” Struct. Optim., 1(4), pp. 193–202. [CrossRef]
Xie, Y. M. , and Steven, G. P. , 1993, “ A Simple Evolutionary Procedure for Structural Optimization,” Comput. Struct., 49(5), pp. 885–896. [CrossRef]
Nishiwaki, S. , Frecker, M. I. , Min, S. , and Kikuchi, N. , 1998, “ Topology Optimization of Compliant Mechanisms Using the Homogenization Method,” Int. J. Numer. Methods Eng., 42(3), pp. 535–559. [CrossRef]
Sigmund, O. , 2001, “ A 99 Line Topology Optimization Code Written in MATLAB,” Struct. Multidiscip. Optim., 21(2), pp. 120–127. [CrossRef]
Reynolds, D. , McConnachie, J. , Bettess, P. , Christie, W. C. , and Bull, J. W. , 1999, “ Reverse Adaptivity—A New Evolutionary Tool for Structural Optimization,” Int. J. Numer. Methods Eng., 45(5), pp. 529–552. [CrossRef]
Wang, M. Y. , and Wang, X. M. , 2004, “ PDE-Driven Level Sets, Shape Sensitivity and Curvature Flow for Structural Topology Optimization,” Comput. Model. Eng. Sci., 6(4), pp. 373–396.
Bendsøe, M. , and Sigmund, O. , 2003, Topology Optimization: Theory, Methods and Applications, Springer, Berlin.
Osher, S. , and Sethian, J. A. , 1988, “ Fronts Propagating With Curvature-Dependent Speed: Algorithms Based on Hamilton–Jacobi Formulations,” J. Comput. Phys., 79(1), pp. 12–49. [CrossRef]
Sethian, J. A. , and Wiegmann, A. , 2000, “ Structural Boundary Design Via Level Set and Immersed Interface Methods,” J. Comput. Phys., 163(2), pp. 489–528. [CrossRef]
Osher, S. J. , and Santosa, F. , 2001, “ Level Set Methods for Optimization Problems Involving Geometry and Constraints: I. Frequencies of a Two-Density Inhomogeneous Drum,” J. Comput. Phys., 171(1), pp. 272–288. [CrossRef]
Wang, M. Y. , Wang, X. M. , and Guo, D. , 2003, “ A Level Set Method for Structural Topology Optimization,” Comput. Methods Appl. Mech. Eng., 192(1), pp. 227–246. [CrossRef]
Allaire, G. , Jouve, F. , and Toader, A. , 2002, “ A Level-Set Method for Shape Optimization,” C. R. Math., 334(12), pp. 1125–1130. [CrossRef]
Allaire, G. , Jouve, F. , and Toader, A. , 2004, “ Structural Optimization Using Sensitivity Analysis and a Level-Set Method,” J. Comput. Phys., 194(1), pp. 363–393. [CrossRef]
Allaire, G. , Gournay, F. D. , Jouve, F. , and Toader, A. , 2005, “ Structural Optimization Using Topological and Shape Sensitivity Via a Level Set Method,” Control Cybern., 34, pp. 59–80.
Zhu, B. L. , Zhang, X. M. , and Fatikow, S. , 2014, “ A Velocity Predictor-Corrector Scheme in Level Set-Based Topology Optimization to Improve Computational Efficiency,” ASME J. Mech. Des., 136(9), p. 091001. [CrossRef]
Zhu, B. L. , Zhang, X. M. , and Fatikow, S. , 2014, “ Level Set-Based Topology Optimization of Hinge-Free Compliant Mechanisms Using a Two-Step Elastic Modeling Method,” ASME J. Mech. Des., 136(3), p. 031007. [CrossRef]
Wang, S. Y. , and Wang, M. Y. , 2006, “ Radial Basis Functions and Level Set Method for Structural Topology Optimization,” Int. J. Numer. Methods Eng., 65(12), pp. 2060–2090. [CrossRef]
Wang, S. Y. , Lim, K. M. , Khoo, B. C. , and Wang, M. Y. , 2007, “ An Extended Level Set Method for Shape and Topology Optimization,” J. Comput. Phys., 221(1), pp. 395–421. [CrossRef]
Luo, Z. , Tong, L. Y. , Wang, M. Y. , and Wang, S. Y. , 2007, “ Shape and Topology Optimization of Compliant Mechanisms Using a Parameterization Level Set Method,” J. Comput. Phys., 227(1), pp. 680–705. [CrossRef]
Luo, Z. , Wang, M. Y. , Wang, S. Y. , and Wei, P. , 2008, “ A Level Set-Based Parameterization Method for Structural Shape and Topology Optimization,” Int. J. Numer. Methods Eng., 76(1), pp. 1–26. [CrossRef]
Luo, Z. , Tong, L. Y. , and Kang, Z. , 2009, “ A Level Set Method for Structural Shape and Topology Optimization Using Radial Basis Functions,” Comput. Struct., 87(7), pp. 425–434. [CrossRef]
Wei, P. , Wang, M. Y. , and Xing, X. H. , 2010, “ A Study on X-Fem in Continuum Structural Optimization Using a Level Set Model,” Comput.-Aided Des., 42(8), pp. 708–719. [CrossRef]
Chen, J. , Shapiro, V. , Suresh, K. , and Tsukanov, I. , 2007, “ Shape Optimization With Topological Changes and Parametric Control,” Int. J. Numer. Methods Eng., 71(3), pp. 313–346. [CrossRef]
Chen, J. , Freytag, M. , and Shapiro, V. , 2008, “ Shape Sensitivity of Constructively Represented Geometric Models,” Comput. Aided Geom. Des., 25(7), pp. 470–488. [CrossRef]
Chen, S. , Wang, M. Y. , and Liu, A. Q. , 2008, “ Shape Feature Control in Structural Topology Optimization,” Comput.-Aided Des., 40(9), pp. 951–962. [CrossRef]
Guo, X. , Zhang, W. , and Zhong, W. , 2014, “ Explicit Feature Control in Structural Topology Optimization Via Level Set Method,” Comput. Methods Appl. Mech. Eng., 272, pp. 354–378. [CrossRef]
Allaire, G. , Jouve, F. , and Michailidis, G. , 2014, “ Thickness Control in Structural Optimization Via a Level Set Method,” https://hal.archives-ouvertes.fr/hal-00985000
Liu, T. , Wang, S. T. , Li, B. , and Gao, L. , 2014, “ A Level-Set-Based Topology and Shape Optimization Method for Continuum Structure Under Geometric Constraints,” Struct. Multidiscip. Optim., 50(2), pp. 253–273. [CrossRef]
Liu, T. , Li, B. , Wang, S. T. , and Gao, L. , 2014, “ Eigenvalue Topology Optimization of Structures Using a Parameterized Level Set Method,” Struct. Multidiscip. Optim., 50(4), pp. 573–591. [CrossRef]
Wang, B. , and Cheng, G. , 2006, “ Design of Cellular Structure for Optimum Efficiency of Heat Dissipation,” IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials, Springer, Berlin, pp. 107–116.
Wendland, H. , 1995, “ Piecewise Polynomial, Positive Definite and Compactly Supported Radial Functions of Minimal Degree,” Adv. Comput. Math., 4(1), pp. 389–396. [CrossRef]
Schaback, R. , and Wendland, H. , 2001, “ Characterization and Construction of Radial Basis Functions,” Multivar. Approximation Appl., N. Dyn, D. Leviatan, D. Levin, and A. Pinkus, eds., Cambridge University Press, Cambridge, UK, pp. 1–24.
Hales, T. C. , 2007, “ The Jordan Curve Theorem, Formally and Informally,” Am. Math. Mon., 114(10), pp. 882–894.
Shimrat, M. , 1962. “ Algorithm 112: Position of Point Relative to Polygon,” Commun. ACM, 5, pp. 446–451. [CrossRef]
O'Searcoid, M. , 2006, Metric Spaces, Springer, Berlin.
Wang, S. , and Wang, M. Y. , 2006, “ Radial Basis Functions and Level Set Method for Structural Topology Optimization,” Int. J. Numer. Methods Eng., 65(12), pp. 2060–2090. [CrossRef]
Dunavant, D. A. , 1985, “ High Degree Efficient Symmetrical Gaussian Quadrature Rules for the Triangle,” Int. J. Numer. Methods Eng., 21(6), pp. 1129–1148. [CrossRef]
2014, “RESURF,” http://www.resurf3d.com
Glassman, A. , Bobyn, J. , and Tanzer, M. , 2006, “ New Femoral Designs: Do They Influence Stress Shielding?,” Clin. Orthop. Relat. Res., 453, pp. 64–74. [CrossRef] [PubMed]
Huiskes, R. , Weinans, H. , and Van Rietbergen, B. , 1992, “ The Relationship Between Stress Shielding and Bone Resorption Around Total Hip Stems and the Effects of Flexible Materials,” Clin. Orthop. Relat. Res., 274, pp. 124–134. [PubMed]
Abdul-Kadir, M. R. , Hansen, U. , Klabunde, R. , Lucas, D. , and Amis, A. , 2008, “ Finite Element Modelling of Primary Hip Stem Stability: The Effect of Interference Fit,” J. Biomech., 41(3), pp. 587–594. [CrossRef] [PubMed]
Viceconti, M. , Brusi, G. , Pancanti, A. , and Cristofolini, L. , 2006, “ Primary Stability of an Anatomical Cementless Hip Stem: A Statistical Analysis,” J. Biomech., 39(7), pp. 1169–1179. [CrossRef] [PubMed]
Viceconti, M. , Monti, L. , Muccini, R. , Bernakiewicz, M. , and Toni, A. , 2001, “ Even a Thin Layer of Soft Tissue May Compromise the Primary Stability of Cementless Hip Stems,” Clin. Biomech., 16(9), pp. 765–775. [CrossRef]
Benvenuti, S. , Ceccanti, F. , and De Kestelier, X. , 2013, “ Living on the Moon: Topological Optimization of a 3D-Printed Lunar Shelter,” NEXUS Network J., 15(2), pp. 285–302. [CrossRef]
Snelling, D. , Li, Q. , Meisel, N. , Williams, C. B. , Batra, R. C. , and Druschitz, A. P. , 2015, “ Lightweight Metal Cellular Structures Fabricated Via 3D Printing of Sand Cast Molds,” Adv. Eng. Mater., 17(7), pp. 923–932. [CrossRef]
Gerstle, T. L. , Ibrahim, A. M. S. , Kim, P. S. , Lee, B. T. , and Lin, S. J. , 2014, “ A Plastic Surgery Application in Evolution: Three-Dimensional Printing,” Plast. Reconstr. Surg., 133(2), pp. 446–451. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

Fourteen months postoperative radiograph of a 73-year-old man after total femur replacement [2]

Grahic Jump Location
Fig. 2

A 2D design domain and the level set model

Grahic Jump Location
Fig. 3

Example of complex geometry: snowflake pattern

Grahic Jump Location
Fig. 4

Flowchart of contour function construction

Grahic Jump Location
Fig. 5

Design domain of the femur model

Grahic Jump Location
Fig. 6

Optimization stages of the femur with volume ratio 20%: (a) Initial design, (b) step 2, (c) step 6, (d) step 12, (e) step 16, and (f) step 20 (final result)

Grahic Jump Location
Fig. 7

Convergent histories of the femur optimization

Grahic Jump Location
Fig. 8

Optimized femur results of different volume ratios: (a) 0.15, (b) 0.2, and (c) 0.25

Grahic Jump Location
Fig. 9

Point-domain position relationship for two arbitrary points: (a) Both are inside the domain, (b) one is inside and the other is outside the domain, and (c) both are outside the domain




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In