Eschenauer, H. A.
, and
Olhoff, N.
, 2001, “Topology Optimization of Continuum Structures: A Review,” ASME Appl. Mech. Rev., 54(4), pp. 331–389.

[CrossRef]
Rozvany, G. I. N.
, 2009, “A Critical Review of Established Methods of Structural Topology Optimization,” Struct. Multidiscip. Optim., 37(3), pp. 217–237.

[CrossRef]
Bendsøe, M.
, and
Sigmund, O.
, 2003, Topology Optimization: Theory, Methods and Application, 2nd ed., Springer, Berlin.

Kesseler, E.
, and
Vankan, W. J.
, 2006, “Multidisciplinary Design Analysis and Multi-Objective Optimisation Applied to Aircraft Wing,” WSEAS Trans. Syst. Control, 1(2), pp. 221–227.

Alonso, J. J.
, 2009, “Aircraft Design Optimization,” Math. Comput. Simul., 79(6), pp. 1948–1958.

[CrossRef]
Coverstone-Carroll, V. H.
,
Hartmann, J. W.
, and
Mason, W. J.
, 2000, “Optimal Multi-Objective Low-Thrust Spacecraft Trajectories,” Comput. Methods Appl. Mech. Eng., 186(2–4), pp. 387–402.

[CrossRef]
Wang, L.
, 2004, “Automobile Body Reinforcement by Finite Element Optimization,” Finite Elem. Anal. Des., 40(8), pp. 879–893.

[CrossRef]
Ananthasuresh, G. K.
,
Kota, S.
, and
Gianchandani, Y.
, 1994, “A Methodical Approach to the Design of Compliant Micromechanisms,” Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, June 13–16, pp. 189–192.

Nishiwaki, S.
, 1998, “Topology Optimization of Compliant Mechanisms Using the Homogenization Method,” Int. J. Numer. Methods Eng., 42(3), pp. 535–559.

[CrossRef]
Bruns, T. E.
, and
Tortorelli, D. A.
, 2001, “Topology Optimization of Non-Linear Elastic Structures and Compliant Mechanisms,” Comput. Methods Appl. Mech. Eng., 190(26–27), pp. 3443–3459.

[CrossRef]
Luo, Z.
, 2005, “Compliant Mechanism Design Using Multi-Objective Topology Optimization Scheme of Continuum Structures,” Struct. Multidiscip. Optim., 30(2), pp. 142–154.

[CrossRef]
Gibson, I.
,
Rosen, D. W.
, and
Stucker, B.
, 2010, Additive Manufacturing Technologies, Springer, New York.

Vidimce, K.
,
Wang, S.-P.
,
Ragan-Kelley, J.
, and
Matusik, W.
, 2013, “
openfab: A Programmable Pipeline for Multi-Material Fabrication,” SIGGRAPH/ACM Trans. Graphics, 32(4), pp. 136:1–136:12.

Thomsen, J.
, 1992, “Topology Optimization of Structures Composed of One or Two Materials,” J. Struct. Optim., 5(1–2), pp. 108–115.

[CrossRef]
Suresh, K.
, 2010, “A 199-Line

matlab Code for Pareto-Optimal Tracing in Topology Optimization,” Struct. Multidiscip. Optim., 42(5), pp. 665–679.

[CrossRef]
Suresh, K.
, 2013, “Efficient Generation of Large-Scale Pareto-Optimal Topologies,” Struct. Multidiscip. Optim., 47(1), pp. 49–61.

[CrossRef]
Bendsøe, M. P.
, and
Kikuchi, N.
, 1988, “Generating Optimal Topologies in Structural Design Using a Homogenization Method,” Comput. Methods Appl. Mech. Eng., 71(2), pp. 197–224.

[CrossRef]
Sigmund, O.
, 2001, “A 99 Line Topology Optimization Code Written in

matlab
,” Struct. Multidiscip. Optim., 21(2), pp. 120–127.

[CrossRef]
Allaire, G.
,
Jouve, F.
, and
Toader, A. M.
, 2002, “A Level-Set Method for Shape Optimization,” C. R. Math., 334(12), pp. 1125–1130.

[CrossRef]
Allaire, G.
, and
Jouve, F.
, 2005, “A Level-Set Method for Vibration and Multiple Loads Structural Optimization,” Struct. Des. Optim., 194(30–33), pp. 3269–3290.

He, L.
,
Kao, C.-Y.
, and
Osher, S.
, 2007, “Incorporating Topological Derivatives Into Shape Derivatives Based Level Set Methods,” J. Comput. Phys., 225(1), pp. 891–909.

[CrossRef]
Wang, M. Y.
,
Wang, X.
, and
Guo, D.
, 2003, “A Level Set Method for Structural Topology Optimization,” Comput. Methods Appl. Mech. Eng., 192(1), pp. 227–246.

[CrossRef]
Hamda, H.
, 2002, “Application of a Multi-Objective Evolutionary Algorithm to Topology Optimum Design,” Fifth International Conference on Adaptive Computing in Design and Manufacture (ACDM'02), Exeter, UK, Apr. 16–18.

Xie, Y. M.
, 1993, “A Simple Evolutionary Procedure for Structural Optimization,” Comput. Struct., 49(5), pp. 885–896.

[CrossRef]
Xie, Y. M.
, and
Steven, G. P.
, 1997, Evolutionary Structural Optimization, 1st ed., Springer-Verlag, Berlin.

van Dijk, N. P.
,
Maute, K.
,
Langelaar, M.
, and
van Keulen, F.
, 2013, “Level-Set Methods for Structural Topology Optimization: A Review,” Struct. Multidiscip. Optim., 48(3), pp. 437–472.

[CrossRef]
Sigmund, O.
, and
Maute, K.
, 2013, “Topology Optimization Approaches,” Struct. Multidiscip. Optim., 48(6), pp. 1031–1055.

[CrossRef]
Guest, J. K.
, 2004, “Achieving Minimum Length Scale in Topology Optimization Using Nodal Design Variables and Projection Functions,” Int. J. Numer. Methods Eng., 61(2), pp. 238–254.

[CrossRef]
Nguyen, T.
,
Paulino, G.
,
Song, J.
, and
Le, C.
, 2010, “A Computational Paradigm for Multiresolution Topology Optimization (MTOP),” Struct. Multidiscip. Optim., 41(4), pp. 525–539.

[CrossRef]
Stump, F. V.
,
Silva, E. C. N.
, and
Paulino, G.
, 2007, “Optimization of Material Distribution in Functionally Graded Structures With Stress Constraints,” Commun. Numer. Methods Eng., 23(6), pp. 535–551.

[CrossRef]
Sigmund, O.
, 2001, “Design of Multiphysics Actuators Using Topology Optimization—Part II: Two-Material Structures,” Comput. Methods Appl. Mech. Eng., 190(49–50), pp. 6605–6627.

[CrossRef]
Yin, L.
, and
Ananthasuresh, G. K.
, 2001, “Topology Optimization of Compliant Mechanisms With Multiple Materials Using a Peak Function Material Interpolation Scheme,” Struct. Multidiscip. Optim., 23(1), pp. 49–62.

[CrossRef]
Jeong, S. H.
,
Choi, D.-H.
, and
Yoon, G. H.
, 2014, “Separable Stress Interpolation Scheme for Stress-Based Topology Optimization With Multiple Homogenous Materials,” Finite Elem. Anal. Des., 82, pp. 16–31.

[CrossRef]
Chaves, L. P.
, and
Cunha, J.
, 2014, “Design of Carbon Fiber Reinforcement of Concrete Slabs Using Topology Optimization,” Constr. Build. Mater., 73, pp. 688–698.

[CrossRef]
de Kruijf, N.
,
Zhou, S.
,
Li, Q.
, and
Mai, Y.-W.
, 2007, “Topological Design of Structures and Composite Materials With Multiobjectives,” Int. J. Solids Struct., 44(22–23), pp. 7092–7109.

[CrossRef]
Blasques, J. P.
, and
Stolpe, M.
, 2012, “Multi-Material Topology Optimization of Laminated Composite Beam Cross Sections,” Compos. Struct., 94(11), pp. 3278–3289.

[CrossRef]
Park, J.
, and
Sutradhar, A.
, 2014, “A Multi-Resolution Method for 3D Multi-Material Topology Optimization,” Comput. Methods Appl. Mech. Eng., 285, pp. 571–586.

[CrossRef]
Wang, M. Y.
, and
Wang, X.
, 2004, “‘Color’ Level Sets: A Multi-Phase Method for Structural Topology Optimization With Multiple Materials,” Comput. Methods Appl. Mech. Eng., 193(6–8), pp. 469–496.

[CrossRef]
Wang, M. Y.
,
Chen, S.
,
Wang, X.
, and
Mei, Y.
, 2005, “Design of Multimaterial Compliant Mechanisms Using Level-Set Methods,” ASME J. Mech. Des., 127(5), pp. 941–956.

[CrossRef]
Wang, X.
,
Mei, Y.
, and
Wang, M. Y.
, 2004, “Level-Set Method for Design of Multi-Phase Elastic and Thermoelastic Materials,” Int. J. Mech. Mater. Des., 1(3), pp. 213–239.

[CrossRef]
Allaire, G.
,
Dapogny, C.
,
Delgado, G.
, and
Michailidis, G.
, 2014, “Multi-Phase Structural Optimization Via a Level Set Method,” ESAIM: Contr. Optim. Calcul. Variat., 20(2), pp. 576–611.

Vermaak, N.
,
Michailidis, G.
,
Parry, G.
,
Estevez, R.
,
Allaire, G.
, and
Bréchet, Y.
, 2014, “Material Interface Effects on the Topology Optimization of Multi-Phase Structures Using a Level Set Method,” Struct. Multidiscip. Optim., 50(4), pp. 623–644.

[CrossRef]
Wang, M. Y.
, and
Zhou, S.
, 2005, “Synthesis of Shape and Topology of Multi-Material Structures With a Phase-Field Method,” J. Comput. Aided Mater. Des., 11(2–3), pp. 117–138.

Wang, Y.
,
Luo, Z.
,
Kang, Z.
, and
Zhang, N.
, 2015, “A Multi-Material Level Set-Based Topology and Shape Optimization Method,” Comput. Methods Appl. Mech. Eng., 283(1), pp. 1570–1586.

[CrossRef]
Xie, Y. M.
, and
Steven, G. P.
, 1993, “A Simple Evolutionary Procedure for Structural Optimization,” Comput. Struct., 49(5), pp. 885–896.

[CrossRef]
Chu, D. N.
,
Xie, Y. M.
,
Hira, A.
, and
Steven, G. P.
, 1996, “Evolutionary Structural Optimization for Problems With Stiffness Constraints,” Finite Elem. Anal. Des., 21(4), pp. 239–251.

[CrossRef]
Querin, O. M.
,
Steven, G. P.
, and
Xie, Y. M.
, 1998, “Evolutionary Structural Optimisation (ESO) Using a Bidirectional Algorithm,” Eng. Comput., 15(8), pp. 1031–1048.

[CrossRef]
Querin, O. M.
,
Steven, G. P.
, and
Xie, Y. M.
, 2000, “Evolutionary Structural Optimisation Using an Additive Algorithm,” Finite Elem. Anal. Des., 34(3–4), pp. 291–308.

[CrossRef]
Liu, X.
,
Yi, W.-J.
,
Li, Q. S.
, and
Shen, P.-S.
, 2008, “Genetic Evolutionary Structural Optimization,” J. Constr. Steel Res., 64(3), pp. 305–311.

[CrossRef]
Sigmund, O.
, 2011, “On the Usefulness of Non-Gradient Approaches in Topology Optimization,” Struct. Multidiscip. Optim., 43(5), pp. 589–596.

[CrossRef]
Ramani, A.
, 2009, “A Pseudo-Sensitivity Based Discrete Variable Approach to Structural Topology Optimization With Multiple Materials,” Struct. Multidiscip. Optim., 41(6), pp. 913–934.

[CrossRef]
Ramani, A.
, 2011, “Multi-Material Topology Optimization With Strength Constraints,” Struct. Multidiscip. Optim., 43(5), pp. 597–615.

[CrossRef]
Novotny, A. A.
, 2006, “Topological-Shape Sensitivity Method: Theory and Applications,” Solid Mech. Appl., 137, pp. 469–478.

Suresh, K.
, and
Takalloozadeh, M.
, 2013, “Stress-Constrained Topology Optimization: A Topological Level-Set Approach,” Struct. Multidiscip. Optim., 48(2), pp. 295–309.

[CrossRef]
Deng, S.
, and
Suresh, K.
, 2014, “Multi-Constrained Topology Optimization Via the Topological Sensitivity,” Struct. Multidisc. Optim., 51(5), pp. 987–1001.

[CrossRef]
Schneider, M.
, and
Andra, H.
, 2014, “The Topological Gradient in Anisotropic Elasticity With an Eye Towards Lightweight Design,” Math. Methods Appl. Sci., 37(11), pp. 1624–1641.

[CrossRef]
Keeffe, G. D.
, 2014, “Optimization of Composite Structures: A Shape and Topology Sensitivity Analysis,” Ph.D. thesis, Ecole Polytechnique, Universite Paris-Saclay, Saint-Aubin, France.

Gao, T.
, and
Zhang, W.
, 2011, “A Mass Constraint Formulation for Structural Topology Optimization With Multiphase Materials,” Int. J. Numer. Methods Eng., 88(8), pp. 774–796.

[CrossRef]
Amstutz, S.
, 2011, “Connections Between Topological Sensitivity Analysis and Material Interpolation Schemes in Topology Optimization,” Struct. Multidiscip. Optim., 43(6), pp. 755–765.

[CrossRef]
Choi, K. K.
, and
Kim, N. H.
, 2005, Structural Sensitivity Analysis and Optimization I: Linear Systems, Springer, New York.

Hughes, T. J. R.
,
Levit, I.
, and
Winget, J.
, 1983, “An Element-by-Element Solution Algorithm for Problems of Structural and Solid Mechanics,” Comput. Methods Appl. Mech. Eng., 36(2), pp. 241–254.

[CrossRef]
Yadav, P.
, and
Suresh, K.
, 2014, “Large Scale Finite Element Analysis Via Assembly-Free Deflated Conjugate Gradient,” ASME J. Comput. Inf. Sci. Eng., 14(4), p. 041008.

[CrossRef]
Suresh, K.
, and
Yadav, P.
, 2012, “Large-Scale Modal Analysis on Multi-Core Architectures,” ASME Paper No. DETC2012-70281.

Saad, Y.
,
Yeung, M.
,
Erhel, J.
, and
Guyomarc'h, F.
, 2000, “A Deflated Version of the Conjugate Gradient Algorithm,” SIAM J. Sci. Comput., 21(5), pp. 1909–1926.

[CrossRef]
Sigmund, O.
, 2007, “Morphology-Based Black and White Filters for Topology Optimization,” Struct. Multidiscip. Optim., 33(4–5), pp. 401–424.

[CrossRef]