Research Papers: Design for Manufacture and the Life Cycle

A Pareto-Optimal Approach to Multimaterial Topology Optimization

[+] Author and Article Information
Amir M. Mirzendehdel

Department of Mechanical Engineering,
Madison, WI 53706
e-mail: mirzendehdel@wisc.edu

Krishnan Suresh

Department of Mechanical Engineering,
Madison, WI 53706
e-mail: ksuresh@wisc.edu

Contributed by the Design for Manufacturing Committee of ASME for publication in the JOURNAL OF MECHANICAL DESIGN. Manuscript received February 10, 2015; final manuscript received July 10, 2015; published online August 6, 2015. Assoc. Editor: Carolyn Seepersad.

J. Mech. Des 137(10), 101701 (Aug 06, 2015) (12 pages) Paper No: MD-15-1081; doi: 10.1115/1.4031088 History: Received February 10, 2015

As additive manufacturing (AM) expands into multimaterial, there is a demand for efficient multimaterial topology optimization (MMTO), where one must simultaneously optimize the topology and the distribution of various materials within the topology. The classic approach to multimaterial optimization is to minimize compliance or stress while imposing two sets of constraints: (1) a total volume constraint and (2) individual volume-fraction constraint on each of the material constituents. The latter can artificially restrict the design space. Instead, the total mass and compliance are treated as conflicting objectives, and the corresponding Pareto curve is traced; no additional constraint is imposed on the material composition. To trace the Pareto curve, first-order element sensitivity fields are computed, and a two-step algorithm is proposed. The effectiveness of the algorithm is demonstrated through illustrative examples in 3D.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.


Eschenauer, H. A. , and Olhoff, N. , 2001, “Topology Optimization of Continuum Structures: A Review,” ASME Appl. Mech. Rev., 54(4), pp. 331–389. [CrossRef]
Rozvany, G. I. N. , 2009, “A Critical Review of Established Methods of Structural Topology Optimization,” Struct. Multidiscip. Optim., 37(3), pp. 217–237. [CrossRef]
Bendsøe, M. , and Sigmund, O. , 2003, Topology Optimization: Theory, Methods and Application, 2nd ed., Springer, Berlin.
Kesseler, E. , and Vankan, W. J. , 2006, “Multidisciplinary Design Analysis and Multi-Objective Optimisation Applied to Aircraft Wing,” WSEAS Trans. Syst. Control, 1(2), pp. 221–227.
Alonso, J. J. , 2009, “Aircraft Design Optimization,” Math. Comput. Simul., 79(6), pp. 1948–1958. [CrossRef]
Coverstone-Carroll, V. H. , Hartmann, J. W. , and Mason, W. J. , 2000, “Optimal Multi-Objective Low-Thrust Spacecraft Trajectories,” Comput. Methods Appl. Mech. Eng., 186(2–4), pp. 387–402. [CrossRef]
Wang, L. , 2004, “Automobile Body Reinforcement by Finite Element Optimization,” Finite Elem. Anal. Des., 40(8), pp. 879–893. [CrossRef]
Ananthasuresh, G. K. , Kota, S. , and Gianchandani, Y. , 1994, “A Methodical Approach to the Design of Compliant Micromechanisms,” Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, June 13–16, pp. 189–192.
Nishiwaki, S. , 1998, “Topology Optimization of Compliant Mechanisms Using the Homogenization Method,” Int. J. Numer. Methods Eng., 42(3), pp. 535–559. [CrossRef]
Bruns, T. E. , and Tortorelli, D. A. , 2001, “Topology Optimization of Non-Linear Elastic Structures and Compliant Mechanisms,” Comput. Methods Appl. Mech. Eng., 190(26–27), pp. 3443–3459. [CrossRef]
Luo, Z. , 2005, “Compliant Mechanism Design Using Multi-Objective Topology Optimization Scheme of Continuum Structures,” Struct. Multidiscip. Optim., 30(2), pp. 142–154. [CrossRef]
Gibson, I. , Rosen, D. W. , and Stucker, B. , 2010, Additive Manufacturing Technologies, Springer, New York.
Vidimce, K. , Wang, S.-P. , Ragan-Kelley, J. , and Matusik, W. , 2013, “ openfab: A Programmable Pipeline for Multi-Material Fabrication,” SIGGRAPH/ACM Trans. Graphics, 32(4), pp. 136:1–136:12.
Thomsen, J. , 1992, “Topology Optimization of Structures Composed of One or Two Materials,” J. Struct. Optim., 5(1–2), pp. 108–115. [CrossRef]
Suresh, K. , 2010, “A 199-Line matlab Code for Pareto-Optimal Tracing in Topology Optimization,” Struct. Multidiscip. Optim., 42(5), pp. 665–679. [CrossRef]
Suresh, K. , 2013, “Efficient Generation of Large-Scale Pareto-Optimal Topologies,” Struct. Multidiscip. Optim., 47(1), pp. 49–61. [CrossRef]
Bendsøe, M. P. , and Kikuchi, N. , 1988, “Generating Optimal Topologies in Structural Design Using a Homogenization Method,” Comput. Methods Appl. Mech. Eng., 71(2), pp. 197–224. [CrossRef]
Sigmund, O. , 2001, “A 99 Line Topology Optimization Code Written in matlab ,” Struct. Multidiscip. Optim., 21(2), pp. 120–127. [CrossRef]
Allaire, G. , Jouve, F. , and Toader, A. M. , 2002, “A Level-Set Method for Shape Optimization,” C. R. Math., 334(12), pp. 1125–1130. [CrossRef]
Allaire, G. , and Jouve, F. , 2005, “A Level-Set Method for Vibration and Multiple Loads Structural Optimization,” Struct. Des. Optim., 194(30–33), pp. 3269–3290.
He, L. , Kao, C.-Y. , and Osher, S. , 2007, “Incorporating Topological Derivatives Into Shape Derivatives Based Level Set Methods,” J. Comput. Phys., 225(1), pp. 891–909. [CrossRef]
Wang, M. Y. , Wang, X. , and Guo, D. , 2003, “A Level Set Method for Structural Topology Optimization,” Comput. Methods Appl. Mech. Eng., 192(1), pp. 227–246. [CrossRef]
Hamda, H. , 2002, “Application of a Multi-Objective Evolutionary Algorithm to Topology Optimum Design,” Fifth International Conference on Adaptive Computing in Design and Manufacture (ACDM'02), Exeter, UK, Apr. 16–18.
Xie, Y. M. , 1993, “A Simple Evolutionary Procedure for Structural Optimization,” Comput. Struct., 49(5), pp. 885–896. [CrossRef]
Xie, Y. M. , and Steven, G. P. , 1997, Evolutionary Structural Optimization, 1st ed., Springer-Verlag, Berlin.
van Dijk, N. P. , Maute, K. , Langelaar, M. , and van Keulen, F. , 2013, “Level-Set Methods for Structural Topology Optimization: A Review,” Struct. Multidiscip. Optim., 48(3), pp. 437–472. [CrossRef]
Sigmund, O. , and Maute, K. , 2013, “Topology Optimization Approaches,” Struct. Multidiscip. Optim., 48(6), pp. 1031–1055. [CrossRef]
Guest, J. K. , 2004, “Achieving Minimum Length Scale in Topology Optimization Using Nodal Design Variables and Projection Functions,” Int. J. Numer. Methods Eng., 61(2), pp. 238–254. [CrossRef]
Nguyen, T. , Paulino, G. , Song, J. , and Le, C. , 2010, “A Computational Paradigm for Multiresolution Topology Optimization (MTOP),” Struct. Multidiscip. Optim., 41(4), pp. 525–539. [CrossRef]
Stump, F. V. , Silva, E. C. N. , and Paulino, G. , 2007, “Optimization of Material Distribution in Functionally Graded Structures With Stress Constraints,” Commun. Numer. Methods Eng., 23(6), pp. 535–551. [CrossRef]
Sigmund, O. , 2001, “Design of Multiphysics Actuators Using Topology Optimization—Part II: Two-Material Structures,” Comput. Methods Appl. Mech. Eng., 190(49–50), pp. 6605–6627. [CrossRef]
Yin, L. , and Ananthasuresh, G. K. , 2001, “Topology Optimization of Compliant Mechanisms With Multiple Materials Using a Peak Function Material Interpolation Scheme,” Struct. Multidiscip. Optim., 23(1), pp. 49–62. [CrossRef]
Jeong, S. H. , Choi, D.-H. , and Yoon, G. H. , 2014, “Separable Stress Interpolation Scheme for Stress-Based Topology Optimization With Multiple Homogenous Materials,” Finite Elem. Anal. Des., 82, pp. 16–31. [CrossRef]
Chaves, L. P. , and Cunha, J. , 2014, “Design of Carbon Fiber Reinforcement of Concrete Slabs Using Topology Optimization,” Constr. Build. Mater., 73, pp. 688–698. [CrossRef]
de Kruijf, N. , Zhou, S. , Li, Q. , and Mai, Y.-W. , 2007, “Topological Design of Structures and Composite Materials With Multiobjectives,” Int. J. Solids Struct., 44(22–23), pp. 7092–7109. [CrossRef]
Blasques, J. P. , and Stolpe, M. , 2012, “Multi-Material Topology Optimization of Laminated Composite Beam Cross Sections,” Compos. Struct., 94(11), pp. 3278–3289. [CrossRef]
Park, J. , and Sutradhar, A. , 2014, “A Multi-Resolution Method for 3D Multi-Material Topology Optimization,” Comput. Methods Appl. Mech. Eng., 285, pp. 571–586. [CrossRef]
Wang, M. Y. , and Wang, X. , 2004, “‘Color’ Level Sets: A Multi-Phase Method for Structural Topology Optimization With Multiple Materials,” Comput. Methods Appl. Mech. Eng., 193(6–8), pp. 469–496. [CrossRef]
Wang, M. Y. , Chen, S. , Wang, X. , and Mei, Y. , 2005, “Design of Multimaterial Compliant Mechanisms Using Level-Set Methods,” ASME J. Mech. Des., 127(5), pp. 941–956. [CrossRef]
Wang, X. , Mei, Y. , and Wang, M. Y. , 2004, “Level-Set Method for Design of Multi-Phase Elastic and Thermoelastic Materials,” Int. J. Mech. Mater. Des., 1(3), pp. 213–239. [CrossRef]
Allaire, G. , Dapogny, C. , Delgado, G. , and Michailidis, G. , 2014, “Multi-Phase Structural Optimization Via a Level Set Method,” ESAIM: Contr. Optim. Calcul. Variat., 20(2), pp. 576–611.
Vermaak, N. , Michailidis, G. , Parry, G. , Estevez, R. , Allaire, G. , and Bréchet, Y. , 2014, “Material Interface Effects on the Topology Optimization of Multi-Phase Structures Using a Level Set Method,” Struct. Multidiscip. Optim., 50(4), pp. 623–644. [CrossRef]
Wang, M. Y. , and Zhou, S. , 2005, “Synthesis of Shape and Topology of Multi-Material Structures With a Phase-Field Method,” J. Comput. Aided Mater. Des., 11(2–3), pp. 117–138.
Wang, Y. , Luo, Z. , Kang, Z. , and Zhang, N. , 2015, “A Multi-Material Level Set-Based Topology and Shape Optimization Method,” Comput. Methods Appl. Mech. Eng., 283(1), pp. 1570–1586. [CrossRef]
Xie, Y. M. , and Steven, G. P. , 1993, “A Simple Evolutionary Procedure for Structural Optimization,” Comput. Struct., 49(5), pp. 885–896. [CrossRef]
Chu, D. N. , Xie, Y. M. , Hira, A. , and Steven, G. P. , 1996, “Evolutionary Structural Optimization for Problems With Stiffness Constraints,” Finite Elem. Anal. Des., 21(4), pp. 239–251. [CrossRef]
Querin, O. M. , Steven, G. P. , and Xie, Y. M. , 1998, “Evolutionary Structural Optimisation (ESO) Using a Bidirectional Algorithm,” Eng. Comput., 15(8), pp. 1031–1048. [CrossRef]
Querin, O. M. , Steven, G. P. , and Xie, Y. M. , 2000, “Evolutionary Structural Optimisation Using an Additive Algorithm,” Finite Elem. Anal. Des., 34(3–4), pp. 291–308. [CrossRef]
Liu, X. , Yi, W.-J. , Li, Q. S. , and Shen, P.-S. , 2008, “Genetic Evolutionary Structural Optimization,” J. Constr. Steel Res., 64(3), pp. 305–311. [CrossRef]
Sigmund, O. , 2011, “On the Usefulness of Non-Gradient Approaches in Topology Optimization,” Struct. Multidiscip. Optim., 43(5), pp. 589–596. [CrossRef]
Ramani, A. , 2009, “A Pseudo-Sensitivity Based Discrete Variable Approach to Structural Topology Optimization With Multiple Materials,” Struct. Multidiscip. Optim., 41(6), pp. 913–934. [CrossRef]
Ramani, A. , 2011, “Multi-Material Topology Optimization With Strength Constraints,” Struct. Multidiscip. Optim., 43(5), pp. 597–615. [CrossRef]
Novotny, A. A. , 2006, “Topological-Shape Sensitivity Method: Theory and Applications,” Solid Mech. Appl., 137, pp. 469–478.
Suresh, K. , and Takalloozadeh, M. , 2013, “Stress-Constrained Topology Optimization: A Topological Level-Set Approach,” Struct. Multidiscip. Optim., 48(2), pp. 295–309. [CrossRef]
Deng, S. , and Suresh, K. , 2014, “Multi-Constrained Topology Optimization Via the Topological Sensitivity,” Struct. Multidisc. Optim., 51(5), pp. 987–1001. [CrossRef]
Schneider, M. , and Andra, H. , 2014, “The Topological Gradient in Anisotropic Elasticity With an Eye Towards Lightweight Design,” Math. Methods Appl. Sci., 37(11), pp. 1624–1641. [CrossRef]
Keeffe, G. D. , 2014, “Optimization of Composite Structures: A Shape and Topology Sensitivity Analysis,” Ph.D. thesis, Ecole Polytechnique, Universite Paris-Saclay, Saint-Aubin, France.
Gao, T. , and Zhang, W. , 2011, “A Mass Constraint Formulation for Structural Topology Optimization With Multiphase Materials,” Int. J. Numer. Methods Eng., 88(8), pp. 774–796. [CrossRef]
Amstutz, S. , 2011, “Connections Between Topological Sensitivity Analysis and Material Interpolation Schemes in Topology Optimization,” Struct. Multidiscip. Optim., 43(6), pp. 755–765. [CrossRef]
Choi, K. K. , and Kim, N. H. , 2005, Structural Sensitivity Analysis and Optimization I: Linear Systems, Springer, New York.
Hughes, T. J. R. , Levit, I. , and Winget, J. , 1983, “An Element-by-Element Solution Algorithm for Problems of Structural and Solid Mechanics,” Comput. Methods Appl. Mech. Eng., 36(2), pp. 241–254. [CrossRef]
Yadav, P. , and Suresh, K. , 2014, “Large Scale Finite Element Analysis Via Assembly-Free Deflated Conjugate Gradient,” ASME J. Comput. Inf. Sci. Eng., 14(4), p. 041008. [CrossRef]
Suresh, K. , and Yadav, P. , 2012, “Large-Scale Modal Analysis on Multi-Core Architectures,” ASME Paper No. DETC2012-70281.
Saad, Y. , Yeung, M. , Erhel, J. , and Guyomarc'h, F. , 2000, “A Deflated Version of the Conjugate Gradient Algorithm,” SIAM J. Sci. Comput., 21(5), pp. 1909–1926. [CrossRef]
Sigmund, O. , 2007, “Morphology-Based Black and White Filters for Topology Optimization,” Struct. Multidiscip. Optim., 33(4–5), pp. 401–424. [CrossRef]


Grahic Jump Location
Fig. 1

From problem specification to optimal part

Grahic Jump Location
Fig. 2

Design space for a TO problem

Grahic Jump Location
Fig. 3

The Pareto-optimal curve and topologies for a single material (A)

Grahic Jump Location
Fig. 4

Topological and element sensitivity fields for the single-material 2D L-bracket problem: (a) plot of 2D topological sensitivity field and (b) plot of 2D element sensitivity field

Grahic Jump Location
Fig. 5

Tracing the Pareto curve and the two substeps

Grahic Jump Location
Fig. 6

Feasible regions with respect to change in inefficiency and cost

Grahic Jump Location
Fig. 8

Subalgorithm 1, reducing C

Grahic Jump Location
Fig. 9

Subalgorithm 2, increasing performance while keeping C constant

Grahic Jump Location
Fig. 10

Three-dimensional structuring element for morphological filtering

Grahic Jump Location
Fig. 11

The Pareto curves and topologies for single material (A) and two materials (A and B)

Grahic Jump Location
Fig. 12

CG iterations for the L-bracket with (a) single material A and (b) two materials A and B

Grahic Jump Location
Fig. 14

Pareto curves for 10,000 and 40,000 elements

Grahic Jump Location
Fig. 15

MBB structure with 10,000 and 40,000 elements at weight fraction of 0.2

Grahic Jump Location
Fig. 16

Cantilevered beam

Grahic Jump Location
Fig. 17

Effect of number of materials on Pareto curve

Grahic Jump Location
Fig. 18

C-bracket problem considered in Ref. [51]

Grahic Jump Location
Fig. 19

Convergence plot of C-bracket

Grahic Jump Location
Fig. 20

Table design geometry and boundary conditions

Grahic Jump Location
Fig. 21

Table design using a single material

Grahic Jump Location
Fig. 22

Table design using three materials




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In