0
Research Papers: Design of Direct Contact Systems

Analytical Investigations on the Mesh Stiffness Function of Solid Spur and Helical Gears

[+] Author and Article Information
X. Gu

Université de Lyon,
INSA Lyon, LaMCoS, UMR CNRS 5259,
Bâtiment Jean d'Alembert,
20 Avenue Albert Einstein,
Villeurbanne Cédex 69621, France
e-mail: Xiaoyu.Gu@insa-lyon.fr

P. Velex

Université de Lyon,
INSA Lyon, LaMCoS, UMR CNRS 5259,
Bâtiment Jean d'Alembert,
20 Avenue Albert Einstein,
Villeurbanne Cédex 69621, France
e-mail: Philippe.Velex@insa-lyon.fr

P. Sainsot

Université de Lyon,
INSA Lyon, LaMCoS, UMR CNRS 5259,
Bâtiment Jean d'Alembert,
20 Avenue Albert Einstein,
Villeurbanne Cédex 69621, France
e-mail: Philippe.Sainsot@insa-lyon.fr

J. Bruyère

Université de Lyon,
INSA Lyon, LaMCoS, UMR CNRS 5259,
Bâtiment Jean d'Alembert,
20 Avenue Albert Einstein,
Villeurbanne Cédex 69621, France
e-mail: Jerome.Bruyere@insa-lyon.fr

1Corresponding author.

Contributed by the Power Transmission and Gearing Committee of ASME for publication in the JOURNAL OF MECHANICAL DESIGN. Manuscript received December 1, 2014; final manuscript received March 5, 2015; published online April 16, 2015. Assoc. Editor: Qi Fan.

J. Mech. Des 137(6), 063301 (Jun 01, 2015) (7 pages) Paper No: MD-14-1762; doi: 10.1115/1.4030272 History: Received December 01, 2014; Revised March 05, 2015; Online April 16, 2015

Approximate formulae are presented which give the time-varying mesh stiffness function for ideal solid spur and helical gears. The corresponding results compare very well with those obtained by using two-dimensional (2D) finite element (FE) models and specific benchmark software codes thus validating the proposed analytical approach. More deviations are reported on average mesh stiffness which, to a large extent, are due to the modeling of gear body deflections.

FIGURES IN THIS ARTICLE
<>
Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Weber, C., and Banaschek, K., 1953, Formänderung und Profilrücknahme bei Gerad-und Schrägverzahnten Antriebstechnik, Vol. 11, Vieweg, Braunschweig.
Attia, A. Y., 1964, “Deflection of Spur Gear Teeth Cut in Thin Rims,” ASME J. Manuf. Sci. Eng., 86(4), pp. 333–341. [CrossRef]
Cornell, R. W., 1981, “Compliance and Stress Sensitivity of Spur Gear Teeth,” ASME J. Mech. Des., 103(2), pp. 447–459. [CrossRef]
Winter, H., and Podlesnik, B., 1983, “Zahnfedersteifigkeit von Stirnrad-paaren, Teil 1,” Antriebstechnik, 22(3), pp. 39–42.
Winter, H., and Podlesnik, B., 1983, “Zahnfedersteifigkeit von Stirnrad-paaren, Teil 2,” Antriebstechnik, 22(5), pp. 51–58.
Winter, H., and Podlesnik, B., 1983, “Zahnfedersteifigkeit von Stirnrad-paaren, Teil 3,” Antriebstechnik, 23(11), pp. 43–49.
Sainsot, P., Velex, P., and Duverger, O., 2004, “Contribution of Gear Body to Tooth Deflections—A New Bidimensional Analytical Formula,” ASME J. Mech. Des., 126(4), pp. 748–752. [CrossRef]
Wilcox, L., and Coleman, W., 1973, “Application of Finite Elements to the Analysis of Gear Tooth Stresses,” ASME J. Manuf. Sci. Eng., 95(4), pp. 1139–1148. [CrossRef]
Chabert, G., Tran, T. D., and Mathis, R., 1974, “An Evaluation of Stresses and Deflections of Spur Gear Teeth Under Strain,” ASME J. Manuf. Sci. Eng., 96(1), pp. 85–93. [CrossRef]
Umezawa, K., 1972, “Deflections and Moments Due to a Concentrated Load on a Rack-Shaped Cantilever Plate With Finite Width for Gears,” Bull. JSME, 15(79), pp. 116–130. [CrossRef]
Yau, E., Busby, H. R., and Houser, D. R., 1994, “A Rayleigh-Ritz Approach to Modeling Bending and Shear Deflections of Gear Teeth,” Comput. Struct., 50(5), pp. 705–713. [CrossRef]
Cai, Y., 1995, “Simulation of the Rotational Vibration of Helical Gears in Consideration of the Tooth Separation Phenomenon (A New Stiffness Function of Helical Involute Tooth Pair),” ASME J. Mech. Des., 117(3), pp. 460–469. [CrossRef]
Seager, D. L., 1967, “Some Elastic Effects in Helical Gears,” Ph.D. thesis, Cambridge University, Cambridge, p. 209.
Schmidt, G. R., Pinnekamp, W., and Wunder, A., 1980, “Optimal Tooth Profile Correction of Helical Gears,” Proceedings of the Third International Power Transmissions and Gearing Conference, San Francisco, Paper No. DET-110.
Ajmi, M., and Velex, P., 2005, “A Model for Simulating the Quasi-Static and Dynamic Behaviour of Solid Wide-Faced Spur and Helical Gears,” Mech. Mach. Theory, 40(2), pp. 173–190. [CrossRef]
Vedmar, L., 1981, “On the Design of External Involute Helical Gears,” Ph.D. thesis, Lund Technical University, Lund, p. 100.
Steward, J. H., 1989, “Elastic Analysis of Load Distribution in Wide-Faced Spur Gears,” Ph.D. thesis, University of Newcastle, Newcastle, p. 208.
Haddad, C. D., 1991, “The Elastic Analysis of Load Distribution in Wide-Faced Helical Gears,” Ph.D. thesis, University of Newcastle, Newcastle, p. 470.
Smith, J. D., 2003, Gear Noise and Vibration, Marcel Dekker, Cambridge, Cambridge, pp. 35–40.
Bruyère, J., and Velex, P., 2013, “Derivation of Optimum Profile Modifications in Narrow-Faced Spur and Helical Gears Using a Perturbation Method,” ASME J. Mech. Des., 135(7), p. 071009. [CrossRef]
ISO∕DIS 6336-2 &3, 2004, Calculation of Load Capacity of Spur and Helical Gears—Parts 2 and 3, International Organization for Standardization, Geneva, Switzerland.
Velex, P., and Sainsot, P., 2002, “An Analytical Study of Tooth Friction Excitations in Errorless Spur and Helical Gears,” Mech. Mach. Theory, 37(7), pp. 641–658. [CrossRef]
Maatar, M., and Velex, P., 1996, “An Analytical Expression of the Time-Varying Contact Length in Perfect Cylindrical Gears-Some Possible Applications in Gear Dynamics,” ASME J. Mech. Des., 118(4), pp. 586–589. [CrossRef]
Cai, Y., and Hayashi, T., 1992, “The Optimum Modification of Tooth Profile for a Pair of Spur Gears to Make Its Rotational Vibration Equal Zero,” Proceedings of the 6th ASME International Power Transmission and Gearing Conference, Phoenix, pp. 453–460.
Pedrero, J. I., Vallejo, I. I., and Pleguezuelos, M., 2007, “Calculation of Tooth Bending Strength and Surface Durability of High Transverse Contact Ratio Spur and Helical Gear Drives,” ASME J. Mech. Des., 129(1), pp. 69–74. [CrossRef]
Houser, D. R., Harianto, J., Iyer, N., Josephson, J., and Chandrasekaren, B., 2000, “A Multi-Variable Approach to Determining the “Best” Gear Design,” Proceedings of the 8th ASME International Power Transmission and Gearing Conference, Baltimore, Sept. 10–13.
Sundaresan, S., Ishii, K., and Houser, D. R., 1991, “A Procedure Using Manufacturing Variance to Design Gears With Minimum Transmission Error,” ASME J. Mech. Des., 113(3), pp. 318–325. [CrossRef]
Sundaresan, S., Ishii, K., and Houser, D. R., 1992, “Design Optimization for Robustness Using Performance Simulation Programs,” Eng. Optim., 20(3), pp. 163–178. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Point of reference M00 on the base plane

Grahic Jump Location
Fig. 2

FE models: (a) FE model for a complete pinion, (b) FE mesh for a five-tooth sector, and (c) loaded profile (detail)

Grahic Jump Location
Fig. 3

Mesh stiffness functions–comparisons between FE results and (10): (a) 25/25 pinion-gear (full FE model), (b) 25/25 pinion-gear (five-tooth sector), and (c) 25/83 pinion-gear (five-tooth sector)

Grahic Jump Location
Fig. 4

Comparisons between Eqs. (9) and (10), the numerical integration of Weber and Banaschek's formulae (referred to as VSA) and the results from LDP. Spur gear example (25/33).

Grahic Jump Location
Fig. 5

Comparisons between Eqs. (9) and (10), the numerical integration of Weber and Banaschek's formulae (referred to as VSA) and the results from LDP. Helical gear example (26/141).

Grahic Jump Location
Fig. 6

Contour plots of the RMS of k∧(τ) (using Eq. (10)) for various profile (ɛα) and transverse (ɛβ) contact ratios

Grahic Jump Location
Fig. 7

Contour plots of the RMS of k∧(τ) using Eq. (10) for the first four mesh harmonics versus profile and transverse contact ratios

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In