Howell, L. L., 2001, *Compliant Mechanisms*, Wiley, New York.

Ananthasuresh, G. K., Kota, S., and Gianchandani, Y., 1994, “A Methodical Approach to the Design of Compliant Micromechanisms,” Solid State Sensor and Actuator Workshop, pp. 189–192.

Kota, S., Joo, J., Rodgers, S. M., and Sniegowski, J., 2001, “Design of Compliant Mechanisms: Applications to MEMS,” Analog Integrated Circuits and Signal Processing, 29(1–2), pp. 7–15.

[CrossRef]Kota, S., Lu, K. J., Kriener, Z., Trease, B., Arenas, J., and Geiger, J., 2005, “Design and Application of Compliant Mechanisms for Surgical Tools,” ASME J. Biomech. Eng., 127(6), pp. 981–989.

[CrossRef]Ma, R., Slocum, A. H., Sung, E., Bean, J. F., and Culpepper, M. L., 2013, “Torque Measurement With Compliant Mechanisms,” ASME J. Mech. Des., 135(3), p. 034502.

[CrossRef]Ananthasuresh, G. K., and Howell, L. L., 2005, “Mechanical Design of Compliant Microsystems—A Perspective and Prospects,” ASME J. Mech. Des., 127(4), pp. 736–738.

[CrossRef]Albanesi, A. E., Fachinotti, V. D., and Pucheta, M. A., 2010, “A Review on Design Methods for Compliant Mechanisms,” Mec. Comput., Struct. Mech. (A), XXIX(3), pp. 59–72.

Yin, L., and Ananthasuresh, G. K., 2003, “Design of Distributed Compliant Mechanisms,” Mech. Based Des. Struct. Mach., 31(2), pp. 151–179.

[CrossRef]Cardoso, E. L., and Fonseca, J., 2004, “Strain Energy Maximization Approach to the Design of Fully Compliant Mechanisms Using Topology Optimization,” Lat. Am. J. Solids Struct., 1(3), pp. 263–275.

Saxena, A., and Ananthasuresh, G. K., 2000, “On an Optimal Property of Compliant Topologies,” Struct. Multidiscip. Optim., 19(1), pp. 36–49.

[CrossRef]Frecker, M. I., Ananthasuresh, G. K., Nishiwaki, S., Kikuchi, N., and Kota, S., 1997, “Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimisation,” ASME J. Mech. Des., 119(2), pp. 238–245.

[CrossRef]Sigmund, O., 1997, “On the Design of Compliant Mechanisms Using Topology Optimization,” J. Struct. Mech., 25(4), pp. 494–524.

[CrossRef]Wang, M. Y., and Shikui, C., 2009, “Compliant Mechanism Optimization: Analysis and Design With Intrinsic Characteristic Stiffness,” Mech. Based Des. Struct. Mach.: Int. J., 37(2), pp. 183–200.

[CrossRef]Lin, J., 2010, “A New Multi-Objective Programming Scheme for Topology Optimization of Compliant Mechanisms,” Struct. Multidiscip. Optim., 40(1–6), pp. 241–255.

[CrossRef]Rahmatalla, S., and Swan, C. C., 2005, “Sparse Monolithic Compliant Mechanisms Using Continuum Structural Topology Optimization,” Int. J. Numer. Meth. Eng., 62(12), pp. 1579–1605.

[CrossRef]Ansola, R., Vegueria, E., Maturana, A., and Canales, J., 2010, “3D Compliant Mechanisms Synthesis by a Finite Element Addition Procedure,” Finite Elem. Anal. Des., 46(9), pp. 760–769.

[CrossRef]Luo, Z., 2005, “Compliant Mechanism Design Using Multi-Objective Topology Optimization Scheme of Continuum Structures,” Struct. Multidiscip. Optim., 30(2), pp. 142–154.

[CrossRef]Bruns, T. E., and Tortorelli, D. A., 2001, “Topology Optimization of Non-Linear Elastic Structures and Compliant Mechanisms,” Comput. Meth. Appl. Mech. Eng., 190(26–27), pp. 3443–3459.

[CrossRef]Krishnan, G., Kim, C., and Kota, S., 2013, “A Metric to Evaluate and Synthesize Distributed Compliant Mechanisms,” ASME J. Mech. Des., 135(1), p. 011004.

[CrossRef]Mehta, V., Frecker, M., and Lesieutre, G. A., 2012, “Two-Step Design of Multicontact-Aided Cellular Compliant Mechanisms for Stress Relief,” ASME J. Mech. Des., 134(12), p. 121001.

[CrossRef]Deepak, S., Dinesh, M., Sahu, D., and Ananthasuresh, G. K., 2009, “A Comparative Study of the Formulations and Benchmark Problems for Topology Optimization of Compliant Mechanisms,” ASME J. Mech. Rob., 1(1), p. 011003.

[CrossRef]Bendsoe, M. P., and Sigmund, O., 2003, *Topology Optimization: Theory, Methods and Application*, 2nd ed., Springer, Berlin, Heidelberg, Germany.

Rozvany, G. I. N., 2009, “A Critical Review of Established Methods of Structural Topology Optimization,” Struct. Multidiscip. Optim., 37(3), pp. 217–237.

[CrossRef]Sethian, J. A., 1999, *Level Set Methods and Fast Marching Methods*, Cambridge University Press, Cambridge, UK.

Wang, M. Y., Chen, S. K., Wang, X. M., and Mei, Y. L., 2005, “Design of Multi-Material Compliant Mechanisms Using Level Set Methods,” ASME J. Mech. Des., 127(5), pp. 941–956.

[CrossRef]Yamada, T., Izui, K., Nishiwaki, S., and Takezawa, A., 2010, “A Topology Optimization Method Based on the Level Set Method Incorporating a Fictitious Interface Energy,” Comput. Meth. Appl. Mech. Eng., 199(45–48), pp. 2876–2891.

[CrossRef]Ansola, R., Vegueria, E., Canales, J., and Tarrago, J. A., 2007, “A Simple Evolutionary Topology Optimization Procedure for Compliant Mechanism Design,” Finite Elem. Anal. Des., 44(1–2), pp. 53–62.

[CrossRef]Frecker, M. I., Kikuchi, N., and Kota, S., 1999, “Topology Optimization of Compliant Mechanisms With Multiple Outputs,” Struct. Multidiscip. Optim., 17(4), pp. 269–278.

[CrossRef]Poulsen, T. A., 2002, “A New Scheme for Imposing a Minimum Length Scale in Topology Optimization,” Int. J. Numer. Meth., 53(3), pp. 567–582.

[CrossRef]Shield, R. T., and Prager, W., 1970, “Optimal Structural Design for Given Deflection,” J. Appl. Math. Phys., ZAMP21, pp. 513–523.

[CrossRef]Eschenauer, H. A., Kobelev, V. V., and Schumacher, A., 1994, “Bubble Method for Topology and Shape Optimization of Structures,” Struct. Optim., 8(1), pp. 42–51.

[CrossRef]Novotny, A. A., Feijóo, R. A., Padra, C., and Taroco, E., 2005, “Topological Derivative for Linear Elastic Plate Bending Problems,” Control Cybern., 34(1), pp. 339–361.

Novotny, A. A., Feijoo, R. A., and Taroco, E., 2007, “Topological Sensitivity Analysis for Three-Dimensional Linear Elasticity Problem,” Comput. Meth. Appl. Mech. Eng., 196(41–44), pp. 4354–4364.

[CrossRef]Novotny, A. A., 2006, “Topological-Shape Sensitivity Method: Theory and Applications,” Solid Mech. Appl., 137, pp. 469–478.

[CrossRef]Sokolowski, J., and Zochowski, A., 1999, “On Topological Derivative in Shape Optimization,” SIAM J. Control Optim., 37(4), pp. 1251–1272.

[CrossRef]Céa, J., Garreau, S., Guillaume, P., and Masmoudi, M., 2000, “The Shape and Topological Optimization Connection,” Comput. Meth. Appl. Mech. Eng., 188(4), pp. 713–726.

[CrossRef]Turevsky, I., Gopalakrishnan, S. H., and Suresh, K., 2009, “An Efficient Numerical Method for Computing the Topological Sensitivity of Arbitrary Shaped Features in Plate Bending,” Int. J. Numer. Meth. Eng., 79(13), pp. 1683–1702.

[CrossRef]Turevsky, I., and Suresh, K., 2007, “Generalization of Topological Sensitivity and its Application to Defeaturing,” ASME Paper No. DETC2007-35353.

[CrossRef]Gopalakrishnan, S. H., and Suresh, K., 2008, “Feature Sensitivity: A Generalization of Topological Sensitivity,” Finite Elem. Anal. Des., 44(11), pp. 696–704.

[CrossRef]Novotny, A. A., Feijoo, R. A., Taroco, E., and Padra, C., 2003, “Topological Sensitivity Analysis,” Comput. Meth. Appl. Mech. Eng., 192(7–8), pp. 803–829.

[CrossRef]Choi, K. K., and Kim, N. H., 2005, *Structural Sensitivity Analysis and Optimization I: Linear Systems*, Springer, New York.

Tortorelli, D. A., and Zixian, W., 1993, “A Systematic Approach to Shape Sensitivity Analysis,” Int. J. Solids Struct., 30(9), pp. 1181–1212.

[CrossRef]Feijoo, R. A., Novotny, A. A., Taroco, E., and Padra, C., 2005, “The Topological-Shape Sensitivity Method in Two-Dimensional Linear Elasticity Topology Design,” *Applications of Computational Mechanics in Structures and Fluids*, CIMNE, Rio de Janeiro, Brazil.

Norato, J. A., Bendsoe, M. P., Haber, R. B., and Tortorelli, D. A., 2007, “A Topological Derivative Method for Topology Optimization,” Struct. Multidiscip. Optim., 33(4–5), pp. 375–386.

[CrossRef]Suresh, K., 2013, “Efficient Generation of Large-Scale Pareto-Optimal Topologies,” Struct. Multidiscip. Optim., 47(1), pp. 49–61.

[CrossRef]Suresh, K., and Takalloozadeh, M., 2013, “Stress-Constrained Topology Optimization: A Topological Level-Set Approach,” Struct. Multidiscip. Optim., 48(2), pp. 295–309.

[CrossRef]Zienkiewicz, O. C., and Taylor, R. L., 2005, *The Finite Element Method for Solid and Structural Mechanics*, Elsevier, Oxford.

Wang, S., Sturler, E. D., and Paulino, G., 2007, “Large-Scale Topology Optimization Using Preconditioned Krylov Subspace Methods With Recycling,” Int. J. Numer. Meth. Eng., 69(12), pp. 2441–2468.

[CrossRef]Augarde, C. E., Ramage, A., and Staudacher, J., 2006, “An Element-Based Displacement Preconditioner for Linear Elasticity Problems,” Comput. Struct., 84(31–32), pp. 2306–2315.

[CrossRef]Saad, Y., 2003,

*Iterative Methods for Sparse Linear Systems*, SIAM, Philadelphia, PA.

[CrossRef]Stanford, B., and Beran, P., 2012, “Optimal Compliant Flapping Mechanism Topologies With Multiple Load Cases,” ASME J. Mech. Des., 134(5), p. 051007.

[CrossRef]