0
Research Papers

Uncertainty Management in the Design of Multiscale Systems

[+] Author and Article Information
Ayan Sinha

The George W. Woodruff School of Mechanical Engineering, Georgia Tech, Atlanta, GA 30332-0405e-mail: sinha12@purdue.edu

Nilanjan Bera

Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, India 721302 e-mail: nilanjan.bera@tatamotors.com

Janet K. Allen

The Systems Realization Laboratory, The University of Oklahoma, Norman, OK 73019e-mail: janet.allen@ou.edu

Jitesh H. Panchal

The Collective Systems Laboratory, Washington State University, Pullman, Washington 99164 e-mail: panchal@wsu.edu

Farrokh Mistree

The Systems Realization Laboratory, The University of Oklahoma, Norman, OK 73019e-mail: farrokh.mistree@ou.edu

1Corresponding author.

Contributed by the Design Automation Committee of ASME for publication in the Journal of Mechanical Design. Manuscript received February 8, 2011; final manuscript received February 6, 2012; published online December 21, 2012. Assoc. Editor: Michael Kokkolaras.

J. Mech. Des 135(1), 011008 (Dec 21, 2012) (16 pages) Paper No: MD-11-1108; doi: 10.1115/1.4006186 History: Received February 08, 2011; Revised February 06, 2012

In this paper, the opportunities for managing uncertainty in simulation-based design of multiscale systems are explored using constructs from information management and robust design. A comprehensive multiscale design problem, the concurrent design of material and product is used to demonstrate our approach. The desired accuracy of the simulated performance is determined by the trade-off between computational cost for model refinement and the benefits of mitigated uncertainty from the refined models. Our approach consists of integrating: (i) a robust design method for multiscale systems and (ii) an improvement potential based approach for quantifying the cost-benefit trade-off for reducing uncertainty in simulation models. Specifically, our approach focuses on allocating resources for reducing model parameter uncertainty arising due to insufficient data from simulation models. Using this approach, system level designers can efficiently allocate resources for sequential simulation model refinement in multiscale systems.

FIGURES IN THIS ARTICLE
<>
Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.

References

Sinha, A., 2011, “Uncertainty Management in Design of Multiscale Systems,” M.S. thesis, The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.
Allen, J. K., Seepersad, C., Choi, H. J., and Mistree, F., 2006, “Robust Design for Multiscale and Multidisciplinary Applications,” J. Mech. Des., 128(4), pp. 832–843. [CrossRef]
Chen, W., Allen, J. K., Mavris, D. N., and Mistree, F., 1996, “A Concept Exploration Method for Determining Robust Top-Level Specifications,” Eng. Optimiz., 26(2), pp. 137–158. [CrossRef]
Chen, W., Allen, J. K., Tsui, K. L., and Mistree, F., 1996, “A Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors,” J. Mech. Des., 118(4), pp. 478–485. [CrossRef]
Choi, H. J., McDowell, D. L., Allen, J. K., and Mistree, F., 2008, “An Inductive Design Exploration Method for Hierarchical Systems Design Under Uncertainty,” Eng. Optimiz., 40(4), pp. 287–307. [CrossRef]
Nair, V., 1992, “Taguchi Parameter Design: A Panel Discussion,” Technometircs, 34, pp. 127–161. [CrossRef]
Tsui, K.-L., 1992, “An Overview of Taguchi Method and Newly Developed Statistical Methods for Robust Design,” IIE Trans., 24(5), pp. 44–57. [CrossRef]
Panchal, J. H., Paredis, C. J. J., Allen, J. K., and Mistree, F., 2008, “A Value-of-Information Based Approach to Simulation Model Refinement,” Eng. Optimiz., 40(3), pp. 223–251. [CrossRef]
Isukapalli, S. K., Roy, A., and Georgopoulos, P. G., 1998, “Stochastic Response Surface Methods (Srsms) for Uncertainty Propagation: Applications to Environmental and Biological Systems,” Risk Anal., 18(3), pp. 351–363. [CrossRef] [PubMed]
Apley, D. W., Liu, J., and Chen, W., 2006, “Understanding the Effects of Model Uncertainty in Robust Design,” J. Mech. Des., 128, pp. 945–958. [CrossRef]
Xiong, Y., Chen, W., Tsui, K.-L., and Apley, D., 2009, “A Better Understanding of Model Updating Strategies in Validating Engineering Models,” J. Comput. Methods Appl. Mech. Eng., 198(15–16), pp. 1327–1337. [CrossRef]
Yin, X., and Chen, W., 2008, “A Hierarchical Statistical Sensitivity Analysis Method for Complex Engineering Systems Design,” J. Mech. Des., 130(7), p. 071402. [CrossRef]
Yin, X., Lee, S., Chen, W., Liu, W. K., and Horstemeyer, M. F., 2009, “Efficient Random Field Uncertainty Propagation in Design Using Multiscale Analysis,” J. Mech. Des., 131(2), p. 021006. [CrossRef]
Wang, G. G., 2003, “Adaptive Response Surface Method Using Inherited Latin Hypercube Design Points,” J. Mech. Des., 125(2), pp. 210–221. [CrossRef]
Xiong, F., Xiong, Y., Chen, W., and Yang, S., 2009, “Optimizing Latin Hypercube Design for Sequential Sampling of Computer Experiments,” Eng. Optimiz., 41(8), pp. 793–810. [CrossRef]
Sasena, M. J., Papalambros, P., and Goovaerts, P., 2002, “Exploration of Metamodeling Sampling Criteria for Constrained Global Optimization,” Eng. Optimiz., 34, pp. 263–278. [CrossRef]
Hamel, J. M., and Azarm, S., 2011, “Reducible Uncertain Interval Design by Kriging Metamodel Assisted Multi-Objective Optimization,” J. Mech. Des., 133, p. 011002. [CrossRef]
Quiepo, N. V., Verde, A., Pintos, S., and Haftka, R. T., 2009, “Assessing the Value of Another Cycle in Gaussian Process Surrogate-Based Optimization,” Struct. Multidiscip. Optim., 39(5), pp. 459–475. [CrossRef]
Akhtar, F., 2008, “Microstructure Evolution and Wear Properties of in Situ Synthesized Tib2 and Tic Reinforced Steel Matrix Composites,” J. Alloys Compd., 459(1–2), pp. 491–497. [CrossRef]
Choi, H.-J., Allen, J. K., Rosen, D., McDowell, D. L., and Mistree, F., 2005, “An Inductive Design Exploration Method for the Integrated Design of Multi-Scale Materials and Products,” Design Automation Conference, Long Beach, CA, Paper No. DETC2005-85335.
Kim, H. M., Michelena, N. F., Papalambros, P. Y., and Jiang, T., 2003, “Target Cascading in Optimal System Design,” J. Mech. Des., 125, pp. 481–489. [CrossRef]
Kim, H.-M., Rideout, D. G., Papalambros, P., and Stein, J. L., 2003, “Analytical Target Cascading in Automotive Vehicle Design,” J. Mech. Des., 125(3), pp. 481–489. [CrossRef]
Liu, H., Chen, W., Kokkolaras, M., Papalambros, P. Y., and Kim, H. M., 2006, “Probabilistic Analytical Target Cascading: A Moment Matching Formulation for Multilevel Optimization under Uncertainty,” J. Mech. Des., 128, pp. 991–1000. [CrossRef]
Sinha, A., Srivastava, A., Ghosh, S., Panchal, J. H., Allen, J. K., Mcdowell, D. L., and Mistree, F., 2009, “Microstructure-Mediated Integration of Material and Product Design—Undersea Submersible,” Design Automation Conference, Z.Mourelatos, ed., San Diego, CA, Aug. 30–Sept. 2, Paper No. DETC2009/87217.
Olson, G. B., 2000, “Designing a New Material World,” Science, 288(5468), pp. 993–998. [CrossRef]
Mistree, F., Hughes, O. F., and Bras, B. A., 1993, “The Compromise Decision Support Problem and the Adaptive Linear Programming Algorithm,” Structural Optimization: Status and Promise, M. P.Kamat, ed., AIAA, Washington, D.C.
Anestiev, L., Froyen, L., and Van Vugt, L., 2000, “On the Kinetics of Diffusion Controlled Precipitation Under Microgravity,” J. Appl. Phys., 88(4), pp. 2130–2137. [CrossRef]
Avrami, M., 1939, “Kinetics of Phase Change I—General Theory,” J. Chem. Phys., 7(12), pp. 1103–1112. [CrossRef]
Johnson, W. A., and Mehl, R. F., 1939, “Reaction Kinetics in Processes of Nucleation and Growth,” Trans. Am. Inst. Min., Metall. Pet. Eng., 135, pp. 416–442.
Mirkovic, D., Grobner, J., Schmid-Fetzer, R., Fabrichnaya, O., and Lukas, H. L., 2004, “Experimental Study and Thermodynamic Re-Assessment of the Al-B System,” J. Alloys Compd., 384(1–2), pp. 168–174. [CrossRef]
Witusiewicz, V. T., Bondar, A. A., Hecht, U., Rex, S., and Velikanova, T. Y., 2008, “The Al-B-Nb-Ti System I. Re-Assessment of the Constituent Binary Systems B-Nb and B-Ti on the Basis of New Experimental Data,” J. Alloys Compd., 448(1–2), pp. 185–194. [CrossRef]
Witusiewicz, V. T., Bondar, A. A., Hecht, U., Rex, S., and Velikanova, T. Y., 2008, “The Al-B-Nb-Ti System III: Thermodynamic Re-Evaluation of the Constituent Binary System Al-Ti,” J. Alloys Compd., 465(1–2), pp. 64–77. [CrossRef]
Patra, A., 2009, “Precipitation Modeling of in-Situ Aluminum-TiB2 Composite,” B. Tech. thesis, Indian Institute of Technology, Kharagpur.
Lenka, S., 2010, “Modeling of Microstructural Evolution in Metal Matrix Composites and Correlation of Process Variables on Grain Size of Composite,” B. Tech. thesis, Indian Institute of Technology, Kharagpur.
Dvorak, G. J., Chen, T. Y., and Teply, J., 1992, “Thermomechanical Stress-Fields in High-Temperature Fibrous Composites 1. Unidirectional Laminates,” Compos. Sci. Technol., 43(4), pp. 347–358. [CrossRef]
Wu, J. F., Shephard, M. S., Dvorak, G. J., and Baheieldin, Y. A., 1989, “A Material Model for the Finite-Element Analysis of Metal Matrix Composites,” Compos. Sci. Technol., 35(4), pp. 347–366. [CrossRef]
Zhang, Z., and Chen, D. L., 2006, “Consideration of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites: A Model for Predicting Their Yield Strength,” Scr. Mater., 54(7), pp. 1321–1326. [CrossRef]
Mishra, D., 2010, “Structure-Property Correlation of Metal Matrix Composites,” B.Tech. thesis, Indian Institute of Technology, Kharagpur.
Bera, N., 2010, “Microstructure Mapping and System Level Design of the Underwater Vehicle,” B. Tech. thesis, Indian Institute of Technology, Kharagpur.
Montgomery, D. C., 1999, “Experimental Design for Product and Process Design and Development,” J. R. Stat. Soc. Ser. D-Statistician, 48, pp. 159–173. [CrossRef]
Myers, R. H., Montgomery, D. C., Vining, G. G., Borror, C. M., and Kowalski, S. M., 2004, “Response Surface Methodology: A Retrospective and Literature Survey,” J. Quality Technol., 36(1), pp. 53–77.
Myers, R., and Montgomery, D., 1995, Response Surface Methodology: Product and Process Optimization Using Designed Experiments, Wiley, New York.
Choi, H., McDowell, D. L., Allen, J. K., Rosen, D., and Mistree, F., 2008, “An Inductive Design Exploration Method for Robust Multiscale Materials Design,” J. Mech. Des., 130(3), p. 031402. [CrossRef]
Bradley, S. R., and Agogino, A. M., 1994, “An Intelligent Real Time Design Methodology for Component Selection: An Approach to Managing Uncertainty,” J. Mech. Des., 116, pp. 980–988. [CrossRef]
Bradley, S. R., Agogino, A. M., and Wood, W. H., 1994, “Intelligent Engineering Component Catalogs,” Artificial Intelligence in Design'94, Kluwer, Dordrecht, The Netherlands, pp. 641–658.
Howard, R., 1966, “Information Value Theory,” IEEE Trans. Syst. Sci. Cybern., SSC-2(1), pp. 779–783.
Lawrence, D. B., 1999, The Economic Value of Information, Springer, New York.
Reich, Y., 1995, “Measuring the Value of Knowledge,” Int. J. Hum.-Comput. Stud., 42(1), pp. 3–30. [CrossRef]
Montogomery, D. C., 2008, Design and Analysis of Experiments, 6th ed., Wiley, New York.
Olive, D. J., 2007, “Prediction Intervals for Regression Models,” Comput. Stat. Data Anal., 51(6), pp. 3115–3122. [CrossRef]
Maxwell, J. C., 1873, Electricity and Magnetism, Claredon Press, Oxford, United Kingdom.

Figures

Grahic Jump Location
Fig. 1

Uncertainty in simulation models. A hypothetical physical phenomenon is represented by a solid curve. A simulation model with simplifications and assumptions predicts this phenomenon under model structure uncertainty (- - - curve). Running the simulation model at a small number of inputs (star points) and building a metamodel to represent the input–output relationship introduces model parameter uncertainty (— — — curve).

Grahic Jump Location
Fig. 2

Simulation model refinement for uncertainty management in multiscale systems

Grahic Jump Location
Fig. 3

Robust design of multiscale systems using IDEM. (This figure expands Steps 1–3 in Fig. 2).

Grahic Jump Location
Fig. 4

Multiscale system for concurrent design of material and product. The various modules correspond to the hierarchy for materials design. MODULES 1 and 2 simulate the structure-processing conditions in the lowest level of the hierarchy. MODULE 3 deals with the structure-property relationship and MODULE 4 simulated the property-performance relationship.

Grahic Jump Location
Fig. 5

IDEM for multiscale design of submersible vehicle.

Grahic Jump Location
Fig. 6

Feasible property design space (MODULE 4). HD_EMI values are shown on the color bar.

Grahic Jump Location
Fig. 7

Feasible structure design space (MODULE 3). HD_EMI values are shown on the color bar.

Grahic Jump Location
Fig. 8

Feasible and robust processing design space (MODULES 1 and 2). HD_EMI values are shown on the color bar.

Grahic Jump Location
Fig. 9

Schematic for improvement potential trade-off. (This figure expands Steps 5–7 shown in Fig. 2).

Grahic Jump Location
Fig. 10

Robust processing spaces for 0.25, 0.20, and 0.15 convergence criteria. HD_EMI values are shown on the color bar.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In