Kennedy, M. C., and O'Hagan, A., 2001, “Bayesian Calibration of Computer Models,” J. R. Stat. Soc. Ser. B (Stat. Methodol.), 63(3), pp. 425–464.

[CrossRef]Rebba, R., Mahadevan, S., and Huang, S., 2006, “Validation and Error Estimation of Computational Models,” Reliab. Eng. Syst. Saf., 91(10–11), pp. 1390–1397.

[CrossRef]American Society of Mechanical Engineers, V&V 20, 2009, Available at ASME Codes & Standards website.

Mahadevan, S., and Liang, B., 2011, “Error and Uncertainty Quantification and Sensitivity Analysis in Mechanics Computational Models,” Int. J. Uncertainty Quantification, 1(2), pp. 147–161.

[CrossRef]Roache, P. J., 1998, “Verification and Validation in Computational Science and Engineering,” Comput. Sci. Eng., Albuquerque, NM: Hermosa Publishers, 1998, pp. 8–9.

Rangavajhala, S., Sura, V. S., Hombal, V. K., and Mahadevan, S., 2011, “Discretization Error Estimation in Multidisciplinary Simulations,” AIAA J., 49(12), pp. 2673–2683.

[CrossRef]Akaike, H., 1978, “A Bayesian Analysis of the Minimum AIC Procedure,” Ann. Inst. Stat. Math., 30(1), pp. 9–14.

[CrossRef]Burnham, K. P., and Anderson, D. R., *Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach*, Springer-Verlag, Berlin.

Rissanen, J., 1978, “Modeling by Shortest Data Description,” Automatica, 14(5), pp. 465–471.

[CrossRef]Schwarz, G., 1978, “Estimating the Dimension of a Model,” Ann. Stat., 6(2), pp. 461–464.

[CrossRef]Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Van Der Linde, A., 2002, “Bayesian Measures of Model Complexity and Fit,” J. R. Stat. Soc. Ser. B (Stat. Methodol.), 64, pp. 583–639.

[CrossRef]Liu, Y., Chen, W., Arendt, P., and Huang, H.-Z., 2011, “Toward a Better Understanding of Model Validation Metrics,” ASME J. Mech. Des., 133(7), p. 071005.

[CrossRef]Oberkampf, W. L., and Roy, C. J., 2010, *Verification and Validation in Scientific Computing*, Cambridge University Press, Cambridge.

Rebba, R., and Mahadevan, S., 2008, “Computational Methods for Model Reliability Assessment,” Reliab. Eng. Syst. Saf., 93(8), pp. 1197–1207.

[CrossRef]Romero, V. J., 2011, “Elements of a Pragmatic Approach for Dealing With Bias and Uncertainty in Experiments Through Predictions,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND2011-7342.

Hills, R. G., and Leslie, I., 2003, “Statistical Validation of Engineering and Scientific Models: Validation Experiments to Application,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND2003-0706.

Oberkampf, W. L., and Barone, M. F., 2006, “Measures of Agreement Between Computation and Experiment: Validation Metrics,” J. Comput. Phys., 217(1), pp. 5–36.

[CrossRef]Zhang, R., and Mahadevan, S., 2003, “Bayesian Methodology for Reliability Model Acceptance,” Reliab. Eng. Syst. Saf., 80(1), pp. 95–103.

[CrossRef]Jiang, X., and Mahadevan, S., 2007, “Bayesian Risk-Based Decision Method for Model Validation Under Uncertainty,” Reliab. Eng. Syst. Saf., 92(6), pp. 707–718.

[CrossRef]Sankararaman, S., and Mahadevan, S., 2011, “Model Validation Under Epistemic Uncertainty,” Reliab. Eng. Syst. Saf., 96, pp. 1232–1241.

[CrossRef]Bernardo, J. M., Smith, A. F. M., and Berliner, M., 2000, *Bayesian Theory*, Wiley, New York, New York, USA.

Messer, M., Panchal, J. H., Krishnamurthy, V., Klein, B., Douglas Yoder, P., Allen, J. K., and Mistree, F., 2010, “Model Selection Under Limited Information Using a Value-of-Information-Based Indicator,” ASME J. Mech. Des., 132(12), p. 121008.

[CrossRef]Radhakrishnan, R., and McAdams, D. A., 2005, “A Methodology for Model Selection in Engineering Design,” ASME J. Mech. Des., 127(3), 378–387.

[CrossRef]Robinson, T. D., Eldred, M. S., Willcox, K. E., and Haimes, R., 2008, “Surrogate-Based Optimization Using Multifidelity Models With Variable Parameterization and Corrected Space Mapping,” AIAA J., 46(11), pp. 2814–2822.

[CrossRef]Rangavajhala, S., Liang, C., Mahadevan, S., and Hombal, V. K., 2011, “Concurrent Optimization of Mesh Refinement and Design Parameters in Multidisciplinary Design,” J. Aircr., 49, pp. 1786–1795.

[CrossRef]Sugiyama, M., and Ogawa, H., 2001, “Subspace Information Criterion for Model Selection,” Neural Comput., 13(8), pp. 1863–1889.

[CrossRef] [PubMed]Segalman, D. J., 2005, “A Four-Parameter Iwan Model for Lap-Type Joints,” ASME J. Appl. Mech., 72, pp. 752–760.

[CrossRef]Smallwood, D. O., Gregory, D. L., and Coleman, R. G., 2001, “A Three Parameter Constitutive Model for a Joint Which Exhibits a Power Law Relationship Between Energy Loss and Relative Displacement,” Proceedings of the 72nd Shock and Vibration Symposium.

Sarkar, S., 2009, “Probabilistic Durability Analysis of Cementitious Materials Under External Sulfate Attack,” Ph.D. thesis, Vanderbilt University, Nashville, TN.

Viana, F. A. C., and Haftka, R.T., 2008, “Using Multiple Surrogates for Metamodeling,” Proceedings of the 7th ASMO-UK/ISSMO International Conference on Engineering Design Optimization.

Zhao, D., and Xue, D., 2011, “A Multi-Surrogate Approximation Method for Metamodeling,” Eng. Comput., 27(2), pp. 139–153.

[CrossRef]Queipo, N. V., Haftka, R. T., Shyy, W., Goel, T., Vaidyanathan, R., and Kevin Tucker, P., 2005, “Surrogate-Based Analysis and Optimization,” Prog. Aerosp. Sci., 41(1), pp. 1–28.

[CrossRef]Villanueva, D., Le Riche, R., Picard, G., and Haftka, R. T., 2012, “Surrogate-Based Agents for Constrained Optimization,” 14th AIAA Non-Deterministic Approaches Conference, Honolulu, AIAA Paper No. 2012-1935.

Rasmussen, C. E., and Williams, C. K. I., 2006, *Gaussian Processes for Machine Learning*, Springer, New York.

Beck, J. L., and Yuen, K. V., 2004, “Model Selection Using Response Measurements: Bayesian Probabilistic Approach,” J. Eng. Mech., 130, pp. 192–203.

[CrossRef]Rebba, R., and Mahadevan, S., 2006, “Validation of Models With Multivariate Output,” Reliab. Eng. Syst. Saf., 91(8), pp. 861–871.

[CrossRef]Shao, J., 1993, “Linear Model Selection by Cross-Validation,” J. Am. Stat. Assoc., 88, pp. 486–494.

[CrossRef]McFarland, J. M., 2008, “Uncertainty Analysis for Computer Simulations Through Validation and Calibration,” Ph.D. thesis, Vanderbilt University, Nashville, TN.

Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P., 1989, “Design and Analysis of Computer Experiments,” Stat. Sci., 4(4), pp. 409–435.

[CrossRef]MacKay, D. J. C., 1998, “Introduction to Gaussian Processes,” NATO ASI Series, Ser. F, 168, pp. 133–166.

Paciorek, C. J., 2003, “Nonstationary Gaussian Processes for Regression and Spatial Modelling,” Ph.D. thesis, Carnegie Mellon University, Pittsburg, PA.

Goldberg, P. W., Williams, C. K. I., and Bishop, C. M., 1998, “Regression With Input-Dependent Noise: A Gaussian Process Treatment,” Adv. Neural Inf. Process. Syst., 10, pp. 493–499.

Kersting, K., Plagemann, C., Pfaff, P., and Burgard, W., 2007, “Most Likely Heteroscedastic Gaussian Process Regression,” Proceedings of the 24th International Conference on Machine Learning, ACM, pp. 393–400.

Iwan, W. D., 1966, “A Distributed-Element Model for Hysteresis and Its Steady-State Dynamic Response,” ASME J. Appl. Mech., 33, pp. 893–900.

[CrossRef]Segalman, D. J., 2002, “A Four-Parameter Iwan Model for Lap-Type Joints,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND2002-3828.

Lilliefors, H. W., 1967, “On the Kolmogorov-Smirnov Test for Normality With Mean and Variance Unknown,” J. Am. Stat. Assoc., 62(318), pp. 399–402.

[CrossRef]Anderson, T. L., 2005, *Fracture Mechanics: Fundamentals and Applications*, CRC Press, Boca Raton.

Paris, P. C., and Erdogan, F., 1963, “A Critical Analysis of Crack Propagation Laws,” J. Basic Eng., 85(4), pp. 528–534.

[CrossRef]Forman, R. G., Kearney, V. E., and Engle, R. M., 1967, “Numerical Analysis of Crack Propagation in Cyclic-Loaded Structures,” J. Basic Eng., 89(3), pp. 459–463.

[CrossRef]Klesnil, M., and Lukáš, P., 1972, “Influence of Strength and Stress History on Growth and Stabilisation of Fatigue Cracks,” Eng. Fract. Mech., 4(1), pp. 77–92.

[CrossRef]Shantz, C., 2010, “Uncertainty Quantification in Fatigue Crack Propagation Under Multiaxial Variable Amplitude Loading,” Ph.D. thesis, Vanderbilt University, Nashville, TN.

Sankararaman, S., Ling, Y., Shantz, C., and Mahadevan, S., 2011, “Inference of Equivalent Initial Flaw Size Under Multiple Sources of Uncertainty,” Int. J. Fatigue, 33(2), pp. 75–89.

[CrossRef]Fatemi, A., and Shamsaei, N., 2011, “Multiaxial Fatigue: An overview and Some Approximation Models for Life Estimation,” Elsv., Int. J. Fatigue, 33, pp. 948–958.

[CrossRef]Forth, S. C., Favrow, L. H., Keat, W. D., and Newman, J. A., 2003, “Three-Dimensional Mixed-Mode Fatigue Crack Growth in a Functionally Graded Titanium Alloy,” Eng. Fract. Mech., 70(15), pp. 2175–2185.

[CrossRef]Reis, L., Li, B., and de Freitas, M., 2009, “Crack Initiation and Growth Path Under Multiaxial Fatigue Loading in Structural Steels,” Int. J. Fatigue, 31(11–12), pp. 1660–1668.

[CrossRef]Carter, B. J., Wawrzynek, P. A., and Ingraffea, A. R., 2000, “Automated 3-D Crack Growth Simulation,” Int. J. Numer. Methods Eng., 47, pp. 229–253.

[CrossRef]Maligno, A. R., Rajaratnam, S., Leen, S. B., and Williams, E. J., 2010, “A Three-Dimensional (3d) Numerical Study Of Fatigue Crack Growth Using Remeshing Techniques,” Eng. Fract. Mech., 77(1), pp. 94–111.

[CrossRef]Ingrafea, T., et al. ., 1996, *FRANC3D, 3D Fracture Analysis Code*, The Cornell University Fracture Group, Cornell University, Ithaca, NY.

Jiang, X., and Mahadevan, S., 2006, “Bayesian Cross-Entropy Methodology for Optimal Design of Validation Experiments,” Meas. Sci. Technol., 17, pp. 1895–1908.

[CrossRef]