Torczon, V., and Trosset, M. W., 1998, “Using Approximations to Accelerate Engineering Design Optimization,” Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, Hampton, VA, Technical Report No. NASA/CR-1998-208460, ICASE Report No. 98-33.

Simpson, T. W., Peplinski, J. D., Koch, P. N., and Allen, J. K., 2001, “Metamodels for Computer-Based Engineering Design: Survey and Recommendations,” Eng. Comput., 17 , pp. 129–150.

[CrossRef]Simpson, T. W., Mauery, T. M., Korte, J. J., and Mistree, F., 2001, “Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimization,” AIAA J., 39 (12), pp. 2233–2241.

[CrossRef]Jin, R., Du, X., and Chen, W., 2003, “The Use of Metamodeling Techniques for Optimization Under Uncertainty,” Struct. Multidiscip. Optim., 25 , pp. 99–116.

[CrossRef]Wang, G. G., and Shan, S., 2007, “Review of Metamodeling Techniques in Support of Engineering Design Optimization,” ASME J. Mech. Des., 129 (4), pp. 370–380.

[CrossRef]Acar, E., and Rais-Rohani, M., 2009, “Ensemble of Metamodels With Optimized Weight Factors,” Struct. Multidiscip. Optim., 37 , pp. 279–294.

[CrossRef]Forrester, A. I., and Keane, A. J., 2009, “Recent Advances in Surrogate-Based Optimization,” Prog. Aerosp. Sci., 45 (1–3), pp. 50–79.

[CrossRef]Simpson, T., Toropov, V., Balabanov, V., and Viana, F., 2008, “Design and Analysis of Computer Experiments in Multidisciplinary Design Optimization: A Review of How far we Have Come–or Not,”"*12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference*", Victoria, Canada, AIAA2008-5802, pp. 10–12

Romero, D., Amon, C. H., and Finger, S., 2006, “On Adaptive Sampling for Single and Multi-Response Bayesian Surrogate Models,” "*2006 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE 2006)*", Philadelphia, Pennsylvania, Paper No. DETC2006-99210, pp.

Myers, D. E., 1982, “Matrix Formulation of Co-Kriging,” Math. Geol., 14 (3), pp. 249–257.

[CrossRef]Myers, D. E., 1992, “Kriging, Cokriging, Radial Basis Functions and the Role of Positive Definiteness,” Comput. Math. Appl., 24 (12), pp. 139–148.

[CrossRef]Ver Hoef, J. M., and Cressie, N., 1993, “Multivariable Spatial Prediction,” Math. Geol., 25 (2), pp. 219–240.

[CrossRef]Jin, R., Chen, W., and Simpson, T. W., 2001, “Comparative Studies of Metamodeling Techniques Under Multiple Modeling Criteria,” Struct. Multidiscip. Optim., 23 , pp. 1–13.

[CrossRef]Meckesheimer, M., Barton, R. R., Simpson, T., Limayem, F., and Yannou, B., 2001, “Metamodeling of Combined Discrete/Continuous Responses,” AIAA J., 39 (10), pp. 1950–1959.

[CrossRef]Sobieszczanski-Sobieski, J., and Haftka, R. T., 1997, “Multidisciplinary Aerospace Design Optimization: Survey of Recent Developments,” Struct. Optim., 14 , pp. 1–23.

[CrossRef]Clarke, S., Griebsch, J. H., and Simpson, T., 2005, “Analysis of Support Vector Regression for Approximation of Complex Engineering Analyses,” Trans. ASME J. Mech. Des., 127 (6), pp. 1077–1087.

[CrossRef]Viana, F., and Haftka, R., 2008, “Using Multiple Surrogates for Metamodeling,” "*Proceedings of the 7th ASMO-UK/ISSMO International Conference on Engineering Design Optimization*", Bath, United Kingdom.

Jones, D. R., Schonlau, M., and Welch, W. J., 1998, “Efficient Global Optimization of Expensive Black-Box Functions,” J. Global Optim., 13 , pp. 455–492.

[CrossRef]Ginsbourger, D., Le Riche, R., and Carraro, L., 2007, “Kriging is Well-Suited to Parallelize Optimization,” "*Computational Intelligence in Expensive Optimization Problems: Adaptation, Learning and Optimization, Vol. 2*", Y.Tenne and C.-K.Goh, eds., Springer-Verlag Berlin Heidelberg, pp. 131–162.

Ponweiser, W., Wagner, T., and Vincze, M., 2008, “Clustered Multiple Generalized Expected Improvement: A Novel Infill Sampling Criterion for Surrogate Models,” "*IEEE Congress on Evolutionary Computation (CEC) 2008*", pp. 3515–3522.

Queipo, N., Haftka, R., Shyy, W., Goel, T., Vaidyanathan, R., and Tucker, P. K., 2005, “Surrogate-Based Analysis and Optimization,” Prog. Aerosp. Sci., 41 , pp. 1–28.

[CrossRef]Li, G., Azarm, S., Farhang-Mehr, A., and Diaz, A. R., 2006, “Approximation of Multiresponse Deterministic Engineering Simulations: A Dependent Metamodeling Approach,” Struct. Multidiscip. Optim., 31 , pp. 260–269.

[CrossRef]Fausett, L., 1998, "*Fundamentals of Neural Networks: Architectures, Algorithms and Applications*", Prentice Hall, Englewood Cliffs, NJ.

Hagan, M. T., and Menhaj, M. B., 1994, “Training Feedforward Networks With the Marquardt Algorithm,” IEEE Trans. Neural Networks, 5 (6), pp. 989–992.

[CrossRef]Rao, M. S., Protopopescu, V., Mann, R. C., and Iyengar, S. S., 1996, “Learning Algorithms for Feed Forward Networks Based on Finite Samples,” IEEE Trans. Neural Networks, 7 (4), pp. 926–930.

[CrossRef]Luo, L., Ji, A., Ma, G., and Guo, C., 1998, “Focusing on One Component Each Time—Comparison of Single and Multiple Component Prediction Algorithms in Artificial Neural Networks for X-Ray Fluorescence Analysis,” X-Ray Spectrom., 27 , pp. 17–22.

[CrossRef]Schimidt, F., Cornejo-Ponce, L., Bueno, M. I., and Poppi, R. J., 2003, “Determination of Some Rare Earth Elements by Edxrf and Artificial Neural Networks,” X-Ray Spectrom., 32 , pp. 423–427.

[CrossRef]Goovaerts, P., 1997, "*Geostatistics for Natural Resources Evaluation, Applied Geostatistics*", Oxford University, New York.

Olea, R. A., 1999, "*Geostatistics for Engineers and Earth Scientists*", Kluwer Academic Publishers, Norwell, MA.

Wackernagel, H., 1995, "*Multivariate Geostatistics*", Springer-Verlag, Berlin.

Cressie, N., 1991, "*Statistics for Spatial Data, Probability and Mathematical Statistics*", John Wiley & Sons, New York, p. 900.

Osio, I. G., 1996, “Multistage Bayesian Surrogates and Optimal Sampling for Engineering Design and Process Improvement,” Ph.D. thesis, Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA.

Osio, I. G., and Amon, C. H., 1996, “An Engineering Design Methodology With Multistage Bayesian Surrogates and Optimal Sampling,” Res. Eng. Des., 8 , pp. 189–206.

[CrossRef]Leoni, N., 1999, “Integrating Information Sources into Global Models: A Surrogate Methodology for Product and Process Development,” Ph.D. Thesis, Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA.

Leoni, N., and Amon, C. H., 1997, “Transient Thermal Design of Wearable Computers With Embedded Electronics Using Phase Change Materials,” ASME Heat Transfer Div., 343 (5), pp. 49–56.

Leoni, N., and Amon, C. H., 2000, “Bayesian Surrogates for Integrating Numerical, Analytical and Experimental Data: Application to Inverse Heat Transfer in Wearable Computers,” IEEE Trans. Compon. Packag. Technol., 23 (1), pp. 23–32.

[CrossRef]Pacheco, J. E., 2003, “A Methodology for Surrogate Model Building in the Engineering Design Process,” Ph.D. thesis, Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.

Pacheco, J. E., Amon, C. H., and Finger, S., 2003, “Bayesian Surrogates Applied to Conceptual Stages of the Engineering Design Process,” Trans. ASME J. Mech. Des., 125 , pp. 664–672.

[CrossRef]Santner, T. J., Williams, B. J., and Notz, W. I., 2003, "*The Design and Analysis of Computer Experiments, Springer Series in Statistics*", Springer-Verlag, Inc., New York.

Morris, M. D., Mitchell, T. J., and Ylvisaker, D., 1993, “Bayesian Design and Analysis of Computer Experiments: Use of Derivatives in Surface Prediction,” Technometrics, 35 (3), pp. 243–255.

[CrossRef]Kennedy, M. C., and O’hagan, A., 2000, “Predicting the Output From a Complex Computer Code When Fast Approximations are Available,” Biometrika, 87 (1), pp. 1–13.

[CrossRef]Lehman, J. S., 2002, “Sequential Design of Computer Experiments for Robust Parameter Design,” Ph.D. thesis, Ohio State University, Columbus, OH.

Davis, G. J., and Morris, M. D., 1997, “Six Factors Which Affect the Condition Number of Matrices Associated with Kriging,” Math. Geol., 29 (5), pp. 669–683.

[CrossRef]Oliver, D. S., 1998, “Calculation of the Inverse of the Covariance,” Math. Geol., 30 (7), pp. 911–933.

[CrossRef]Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P., 1989, “Design and Analysis of Computer Experiments,” Stat. Sci., 4 (4), pp. 409–435.

[CrossRef]Cressie, N., and Wikle, C. K., 1998, “The Variance-Based Cross-Variogram: You Can Add Apples and Oranges,” Math. Geol., 30 (7), pp. 789–799.

[CrossRef]Shewry, M. C., and Wynn, H. P., 1987, “Maximum Entropy Sampling,” J. Appl. Stat., 14 (2), pp. 165–170.

[CrossRef]Jin, R., Chen, W., and Sudjianto, A., 2002, “On Sequential Sampling for Global Metamodeling in Engineering Design,” "*2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE)*", Montreal, Canada, Paper No. DETC2002/DAC-34092.

Kleijnen, J. P. C., and Van Beers, W. C. M., 2004, “Application-Driven Sequential Designs for Simulation Experiments: Kriging Metamodeling,” J. Oper. Res. Soc., 55 (8), pp. 876–883.

[CrossRef]Turner, C. J., Campbell, M. I., and Crawford, R. H., 2004, “Metamodel Defined Multidimensional Embedded Sequential Sampling Criteria,” "*International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE, 2004)*", Salt Lake City, UT, USA, Paper No. DETC2004-57722.

Romero, D., Amon, C. H., and Finger, S., 2010, “Improving Multi-Response Metamodels With Upper/Lower Bound Information Using Multi-Stage, Non-Stationary Covariance Functions,” "*2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE)*", Montreal, Quebec, Canada, Paper No. DETC2010-29030, pp.

Wasserman, L., 2006, "*All of Statistics: A Concise Course in Statistical Inference, Springer Texts in Statistics*", Springer-Verlag, New York.

Burnham, K., and Anderson, D., 2004, “Multimodel Selection: Understanding Aic and Bic in Model Selection,” Sociological Methods & Research, Vol. 33(2) Colorado State University, Cooperative Fish and Wildlife Research Unit, Fort Collins, Colorado, pp. 261–304.

Burnham, K., and Anderson, D., 2002, "*Model Selection and Multimodel Inference: A Practical-Theoretical Approach*", Springer-Verlag, New York.

Akaike, H., 1974, “A New Look at the Statistical Model Identification,” IEEE Trans. Autom. Control, AC-19 (6), pp. 716–723.

[CrossRef]Romero, D., Finger, S. and Amon, C., 2003, “Modeling Time-Dependent Systems Using Multi-Stage Bayesian Surrogates,” "*ASME 2003 International Mechanical Engineering Congress and Exposition (IMECE2003)*", Washington, DC, USA, Paper No. IMECE2003-55049.

Romero, D., Amon, C. H., Finger, S., and Verdinelli, I., 2004, “Multi-Stage Bayesian Surrogates for the Design of Time-Dependent Systems,” "*2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE)*", Salt Lake City, UT, USA, Paper No. DETC2004-57510.

Sasena, M., Papalambros, P., and Goovaerts, P., 2002, “Exploration of Metamodeling Sampling Criteria for Constrained Global Optimization,” Eng. Optimiz., 34 , pp. 263–278.

[CrossRef]Coleman, T., Branch, M. A., and Grace, A., 2002, "*Matlab - Optimization Toolbox User’s Guide*", The Mathworks, Inc., Natick, MA, USA, Version: 2.2 R13.

Viana, F., Haftka, R., and Steffen, V., 2009, “Multiple Surrogates: How Cross-Validation Errors Can Help us to Obtain the Best Predictor,” Struct. Multidiscip. Optim., 39 , pp. 439–457.

[CrossRef]Botros, K. K., Kibrya, G., and Glover, A., 2002, “A Demonstration of Artificial-Neural-Networks-Based Data Mining for Gas-Turbine-Driven Compressor Stations,” Trans. ASME, J. Eng. Gas Turbines Power, 124 , pp. 284–297.

[CrossRef]Smith, B. R., Romero, D. A., Agonafer, D., Gu, J., and Amon, C. H., 2005, “Aerogel for Microsystems Thermal Insulation: System Design and Process Development,” "*2005 ASME Summer Heat Transfer Conference*", San Francisco, CA, USA.

Sobol, I. M., 2001, “Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates,” Math. Comput. Simul., 55 , pp. 271–280.

[CrossRef]Oakley, J., and O’hagan, A., 2004, “Probabilistic Sensitivity Analysis of Complex Models: A Bayesian Approach,” J. R. Stat. Soc. Ser. B (Methodol.), 66 (3), pp. 751–769.

[CrossRef]Kennedy, M. C., and O’hagan, A., 2001, “Bayesian Calibration of Computer Models,” J. R. Stat. Soc. Ser. B (Methodol.), 63 (3), pp. 425–464.

[CrossRef]Kennedy, M. C., and O’Hagan, A., 2000, “Predicting the Output from a Complex Computer Code when Fast Approximations are Available,” Biometrika, 87 (1), pp. 1–13.

Helterbrand, J. D., and Cressie, N., 1994, “Universal Cokriging under Intrinsic Corregionalization,” Math. Geol., 26 (2), pp. 105–226.

[CrossRef]Moore, R., Romero, D., and Paredis, C., 2011, “A Rational Design Approach to Gaussian Process Modeling for Variable Fidelity Models,” "*2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE)*", Washington, DC, USA, Paper No. DETC2011-48227.

Zadeh, P., Toropov, V., and Wood, A., 2009, “Metamodel-Based Collaborative Optimization Framework,” Struct. Multidiscip. Optim., 38 , pp. 103–115.

[CrossRef]