Gobbi, M., and Mastinu, G., 2001, “Analytical Description and Optimization of the Dynamic Behaviour of Passively Suspended Road Vehicles,” J. Sound Vib., 245 (3), pp. 457–481.

[CrossRef]Verros, G., Natsiavas, S., and Papadimitriou, C., 2005, “Design Optimization of Quarter-Car Models With Passive and Semi-Active Suspensions Under Random Road Excitation,” J. Vib. Control, 11 (5), pp. 581–606.

[CrossRef]He, Y., and Mcphee, J., 2005, “Multidisciplinary Design Optimization of Mechatronic Vehicles With Active Suspensions,” J. Sound Vib., 283 (1-2), pp. 217–241.

[CrossRef]He, Y., and Mcphee, J., 2007, “Application of Optimisation Algorithms and Multibody Dynamics to Ground Vehicle Suspension Design,” Int. J. Heavy Vehicle Syst., 14 (2), pp. 158–192.

[CrossRef]Alkhatib, R., Nakhaie Jazar, G., and Golnaraghi, M., 2004, “Optimal Design of Passive Linear Suspension Using Genetic Algorithm,” J. Sound Vib., 275 (3–5), pp. 665–691.

[CrossRef]Jazar, R. N., 2008, "*Vehicle Dynamics: Theory and Application*", Springer, USA.

Hrovat, D., 1993, “Applications of Optimal Control to Advanced Automotive Suspension Design,” ASME J. Dyn. Syst., Meas., Control, 115 (2B), pp. 328–342.

[CrossRef]Georgiou, G., Verros, G., and Natsiavas, S., 2007, “Multi-Objective Optimization of Quarter-Car Models With a Passive or Semi-Active Suspension System,” Veh. Syst. Dyn., 45 (1), pp. 77–92.

[CrossRef]Segla, S., and Reich, S., 2007, “Optimization and Comparison of Passive, Active, and Semi-Active Vehicle Suspension Systems,” "*12th IFToMM World Congress*", Besancon, France.

Baumal, A. E., Mcphee, J. J., and Calamai, P. H., 1998, “Application of Genetic Algorithms to the Design Optimization of an Active Vehicle Suspension System,” Comput. Methods Appl. Mech. Eng., 163 (1–4), pp. 87–94.

[CrossRef]He, Y., and Mcphee, J., 2005, “Multidisciplinary Optimization of Multibody Systems With Application to the Design of Rail Vehicles,” Multibody Syst. Dyn., 14 (2), pp. 111–135.

[CrossRef]He, Y., and Mcphee, J., 2005, “A Design Methodology for Mechatronic Vehicles: Application of Multidisciplinary Optimization, Multibody Dynamics and Genetic Algorithms,” Veh. Syst. Dyn., 43 (10), pp. 697–733.

[CrossRef]Good, C., and Mcphee, J., 1999, “Dynamics of Mountain Bicycles With Rear Suspensions: Modelling and Simulation,” Sports Eng. (Int. Sports Eng. Assoc.), 2 (3), pp. 129–143.

Good, C., and Mcphee, J., 2000, “Dynamics of Mountain Bicycles With Rear Suspensions: Design Optimization,” Sports Eng. (Int. Sports Eng. Assoc.), 3 (1), pp. 49–55.

[CrossRef]Papoulis, A., Pillai, S., and Unnikrishna, S., 2002, "*Probability, Random Variables, and Stochastic Processes*", McGraw-Hill, New York.

Rensburg, E., and Torrie, G., 1993, “Estimation of Multidimensional Integrals: Is Monte Carlo the Best Method?,” J. Phys. A, 26 (4), pp. 943–953.

[CrossRef]Bratley, P., Fox, B., and Niederreiter, H., 1992, “Implementation and Tests of Low-Discrepancy Sequences,” ACM Trans. Model. Comput. Simul., 2 (3), pp. 195–213.

[CrossRef]Wiener, N., 1938, “The Homogeneous Chaos,” Am. J. Math., 60 (4), pp. 897–936.

[CrossRef]Xiu, D., and Karniadakis, G., 2002, “The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations,” SIAM J. Sci. Comput., 24 (2), pp. 619–644.

[CrossRef]Xiu, D., 2009, “Fast Numerical Methods for Stochastic Computations: A Review,” Commun. Comput. Phys., 5 (2–4), pp. 242–272.

[CrossRef]Xiu, D., and Hesthaven, J. S., 2005, “High-Order Collocation Methods for Differential Equations With Random Inputs,” SIAM J. Sci. Comput., 27 (3), pp. 1118–1139.

[CrossRef]Sandu, A., Sandu, C., and Ahmadian, M., 2006, “Modeling Multibody Systems With Uncertainties. Part I: Theoretical and Computational Aspects,” Multibody Syst. Dyn., 15 (4), pp. 369–391.

[CrossRef]Cheng, H., and Sandu, A., 2009, “Efficient Uncertainty Quantification With the Polynomial Chaos Method for Stiff Systems,” Math. Comput. Simul., 79 (11), pp. 3278–3295.

[CrossRef]Wan, X., and Karniadakis, G., 2005, “An Adaptive Multi-Element Generalized Polynomial Chaos Method for Stochastic Differential Equations,” J. Comput. Phys., 209 (2), pp. 617–642.

[CrossRef]Wan, X., and Karniadakis, G., 2006, “Beyond Wiener–Askey Expansions: Handling Arbitrary Pdfs,” J. Sci. Comput., 27 (1), pp. 455–464.

[CrossRef]Wan, X., and Karniadakis, G., 2007, “Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures,” SIAM J. Sci. Comput., 28 (3), pp. 901–928.

[CrossRef]Foo, J., Wan, X., and Karniadakis, G., 2008, “The Multi-Element Probabilistic Collocation Method: Error Analysis and Simulation,” J. Comput. Phys, 227 (22), pp. 9572–9595.

[CrossRef]Foo, J., and Karniadakis, G. E., 2010, “Multi-Element Probabilistic Collocation Method in High Dimensions,” J. Comput. Phys., 229 (5), pp. 1536–1557.

[CrossRef]Gerritsma, M., Van Der Steen, J.-B., Vos, P., and Karniadakis, G., 2010, “Time-Dependent Generalized Polynomial Chaos,” J. Comput. Phys., 229 (22), pp. 8333–8363.

[CrossRef]Sandu, C., Sandu, A., and Ahmadian, M., 2006, “Modeling Multibody Systems With Uncertainties. Part II: Numerical Applications,” Multibody Syst. Dyn., 15 (3), pp. 241–262.

[CrossRef]Cheng, H., and Sandu, A., 2007, “Numerical Study of Uncertainty Quantification Techniques for Implicit Stiff Systems,” "*Proceedings of the 45-th ACM Southeast Conference*", Winston-Salem, NC, USA, pp. 367–372.

Cheng, H., and Sandu, A., 2009, “Uncertainty Quantification in 3d Air Quality Models Using Polynomial Chaoses,” Environ. Modell. Software, 24 (8), pp. 917–925.

[CrossRef]Cheng, H., and Sandu, A., 2009, “Uncertainty Apportionment for Air Quality Forecast Models,” "*Proceedings of 24th Annual ACM Symposium on Applied Computing (SAC-2009), Computational Sciences Track*", Honolulu, HI, USA, pp. 956–960.

Cheng, H., and Sandu, A., 2010, “Collocation Least-Squares Polynomial Chaos Method,” "*Proceedings of the 2010 Spring Simulation Multiconference (SpringSim’10), High Performance Computing Symposium (HPC-2010)*", Orlando, FL, USA, p. 80.

Blanchard, E., 2010, “Polynomial Chaos Approaches to Parameter Estimation and Control Design for Mechanical Systems With Uncertain Parameters,” Doctorate thesis, Virginia Tech, Blacksburg.

Blanchard, E., Sandu, A., and Sandu, C., 2007, “Parameter Estimation Method Using an Extended Kalman Filter,” "*Joint North America, Asia-Pacific ISTVS Conference*", Fairbanks, Alaska, USA, pp. 23–26.

Blanchard, E., Sandu, A., and Sandu, C., 2009, “Parameter Estimation for Mechanical Systems Via an Explicit Representation of Uncertainty,” Eng. Comput., 26 (5), pp. 541–569.

[CrossRef]Blanchard, E., Sandu, A., and Sandu, C., 2010, “Polynomial Chaos-Based Parameter Estimation Methods Applied to a Vehicle System,” Proc. Inst. Mech. Eng., Part K: J. Multi-body Dyn., 224 (1), pp. 59–81.

Blanchard, E., Sandu, A., and Sandu, C., 2010, “Polynomial Chaos Based Method for the Lqr Problem With Uncertain Parameters in the Formulation,” "*Proceedings of the ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference*", Montreal, CA.

Blanchard, E., Sandu, C., and Sandu, A., 2007, “A Polynomial-Chaos-Based Bayesian Approach for Estimating Uncertain Parameters of Mechanical Systems,” "*Proceedings of the ASME IDETC 2007, 9th International Conference on Advanced Vehicle and Tire Technology*", Las Vegas, NV, USA, pp. 4–7.

Blanchard, E., Sandu, C., and Sandu, A., 2009, “Comparison Between a Polynomial-Chaos-Based Bayesian Approach and a Polynomial-Chaos-Based Ekf Approach for Parameter Estimation With Application to Vehicle Dynamics,” "*Proceedings of the ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 11th International Conference on Advanced Vehicle and Tire Technology*", San Diego, CA, USA.

Blanchard, E., and Sandu, D., 2007, “A Polynomial Chaos Based Bayesian Approach for Estimating Uncertain Parameters of Mechanical Systems-Part 2: Applications to Vehicle Systems,” Technical Report No. TR-07-39, Virginia Tech, Blacksburg.

Blanchard, E., and Sandu, D., 2007, “A Polynomial Chaos Based Bayesian Approach for Estimating Uncertain Parameters of Mechanical Systems–Part 1: Theoretical Approach,” Technical Report No. TR-07-38, Virginia Tech, Blacksburg.

Blanchard, E. D., Sandu, A., and Sandu, C., 2010, “A Polynomial Chaos-Based Kalman Filter Approach for Parameter Estimation of Mechanical Systems,” ASME J. Dyn. Syst., Meas., Control, 132 (6), p. 061404.

[CrossRef]Pence, B., Hays, J., Fathy, H., Sandu, C., and Stein, J., 2011, “Vehicle Sprung Mass Estimation for Rough Terrain,” Int. J. Veh. Des., Special Issue on Modeling and Simulation of Ground Vehicle Systems (submitted). Available at

http://www.inderscience.com/browse/index.php?journalID=31&action=comingPence, B. L., Fathy, H. K., and Stein, J. L., 2009, “A Base-Excitation Approach to Polynomial Chaos-Based Estimation of Sprung Mass for Off-Road Vehicles,” "*ASME Dynamic Systems and Control Conference, n PART A*", pp. 857–864.

Pence, B. L., Fathy, H. K., and Stein, J. L., 2010, “Recursive Bayesian Parameter Estimation Using Polynomial Chaos Theory.”

Pence, B. L., Fathy, H. K., and Stein, J. L., 2010, “An Integrated Cost/Maximum Likelihood Approach to Recursive Polynomial Chaos Parameter Estimation.”

Southward, S., 2007, “Real-Time Parameter Id Using Polynomial Chaos Expansions,” "*ASME Conference Proceedings*", pp. 1167–1173.

Shimp, S., 2008, “Vehicle Sprung Mass Parameter Estimation Using an Adaptive Polynomial-Chaos Method,” Master’s thesis, Virginia Tech, Blacksburg.

Marzouk, Y., and Xiu, D., 2009, “A Stochastic Collocation Approach to Bayesian Inference in Inverse Problems,” Commun. Comput. Phys., 6 , pp. 826–847.

[CrossRef]Marzouk, Y. M., Najm, H. N., and Rahn, L. A., 2007, “Stochastic Spectral Methods for Efficient Bayesian Solution of Inverse Problems,” J. Comput. Phys., 224 (2), pp. 560–586.

[CrossRef]Price, D., 2008, “Estimation of Uncertain Vehicle Center of Gravity Using Polynomial Chaos Expansions,” Master’s thesis, Virginia Tech, Blackburg.

Smith, A., Monti, A., and Ponci, F., 2007, “Indirect Measurements Via a Polynomial Chaos Observer,” IEEE Trans. Instrum. Meas., 56 (3), pp. 743–752.

[CrossRef]Li, J., and Xiu, D., 2009, “A Generalized Polynomial Chaos Based Ensemble Kalman Filter With High Accuracy,” J. Comput. Phys., 228 (15), pp. 5454–5469.

[CrossRef]Saad, G., Ghanem, R., and Masri, S., 2007, “Robust System Identification of Strongly Non-Linear Dynamics Using a Polynomial Chaos Based Sequential Data Assimilation Technique,” 6 , pp. 6005–6013.

Templeton, B., 2009, “A Polynomial Chaos Approach to Control Design,” Doctorate thesis, Virginia Tech, Blacksburg.

Smith, A., Monti, A., and Ponci, F., 2006, “Robust Controller Using Polynomial Chaos Theory,” "*Industry Applications Conference*", Tampa, FL, Oct. 8–12, pp. 2511–2517.

Prempraneerach, P., Hover, F., Triantafyllou, M., and Karniadakis, G., 2010, “Uncertainty Quantification in Simulations of Power Systems: Multi-Element Polynomial Chaos Methods,” Reliab. Eng. Syst. Saf., 95 , pp. 632–646.

[CrossRef]Kewlani, G., and Iagnemma, K., 2009, “A Multi-Element Generalized Polynomial Chaos Approach to Analysis of Mobile Robot Dynamics Under Uncertainty,” Intelligent Robots and Systems, IROSIEEE/RSJ International Conference on 2009, pp. 1177–1182, ©2009 Institute of Electrical and Electronics Engineers.

Fisher, J., and Bhattacharya, R., 2008, “On Stochastic Lqr Design and Polynomial Chaos,” "*American Control Conference*", pp. 95–100.

Fisher, J., and Bhattacharya, R., 2011, “Optimal Trajectory Generation With Probabilistic System Uncertainty Using Polynomial Chaos,” ASME J. Dyn. Syst., Meas., Control, 133 , p. 014501.

[CrossRef]Hays, J., Sandu, A., Sandu, C., and Hong, D., 2011, “Motion Planning of Uncertain Fully-Actuated Dynamical Systems—An Inverse Dynamics Formulation,” "*ASME IDETC/CIE Conference*", Washington, DC, USA.

Hays, J., Sandu, A., Sandu, C., and Hong, D., 2011, “Motion Planning of Uncertain Fully-Actuated Dynamical Systems—A Forward Dynamics Formulation,” "*ASME IDETC/CIE Conference*", Washington, DC, USA.

Hays, J., Sandu, A., Sandu, C., and Hong, D., 2011, “Motion Planning of Uncertain Under-Actuated Dynamical Systems—A Hybrid Dynamics Formulation,” "*Proceedings of the ASME 2011 International Mechanical Engieneering Congress and Exposition*", Denver, CO, USA.

Hays, J., Sandu, A., Sandu, C., and Hong, D., 2011, “Motion Planning of Uncertain Ordinary Differential Equation Systems,” Technical Report No. TR-11-04, Virginia Tech, Blacksburg, VA, USA.

Du, X., and Chen, W., 2004, “Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design,” ASME J. Mech. Des., 126 (2), pp. 225–233.

[CrossRef]Hamel, J. M., and Azarm, S., 2011, “Reducible Uncertain Interval Design by Kriging Metamodel Assisted Multi-Objective Optimization,” ASME J. Mech. Des., 133 (1), p. 011002.

[CrossRef]Poles, S., and Lovison, A., 2009, “A Polynomial Chaos Approach to Robust Multiobjective Optimization,” "*Hybrid and Robust Approaches to Multiobjective Optimization*", Dagstuhl, Germany, pp. 1–15.

Xiong, F., Xue, B., Yan, Z., and Yang, S., 2011, “Polynomial Chaos Expansion Based Robust Design Optimization,” "*2011 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (ICQR2MSE)*", Xian, China, pp. 868–873.

Coelho, R. F., and Bouillard, P., 2011, “Multi-Objective Reliability-Based Optimization With Stochastic Metamodels,” Evol. Comput., 19 (4), pp. 525–560.

[CrossRef]Hays, J., Sandu, A., Sandu, C., and Hong, D., 2011, “Parametric Design Optimization of Uncertain Ordinary Differential Equation Systems,” "*Proceedings of the ASME 2011 International Mechanical Engieneering Congress and Exposition*", Denver, CO, USA.

Hays, J., Sandu, A., Sandu, C., and Hong, D., 2011, “Parametric Design Optimization of Uncertain Ordinary Differential Equation Systems,” Technical Report No. TR-11-06, Virginia Tech, Blacksburg, VA, USA.

Greenwood, D., 2003, "*Advanced Dynamics*", Cambridge University Press, Cambridge, UK.

Murray, R., Li, Z., Sastry, S., and Sastry, S., 1994, "*A Mathematical Introduction to Robotic Manipulation*", CRC Press, Inc, Boca Raton, FL, USA.

Nikravesh, P. E., 2004, “An Overview of Several Formulations for Multibody Dynamics,” "*Product Engineering*", Springer-Verlag, Berlin, Germany.

Haug, E. J., 1989, "*Computer Aided Kinematics and Dynamics of Mechanical Systems. Vol. 1: Basic Methods*", Allyn & Bacon, Inc., Boston, Massachusetts.

Diehl, M., Ferreau, H., and Haverbeke, N., 2009, “Efficient Numerical Methods for Nonlinear Mpc and Moving Horizon Estimation,” "*Nonlinear Model Predictive Control*", L.Magni et al. (Eds.), "*Nonlinear Model Predictive Control, LNCIS 384*", springerlink.com (©) Springer-Verlag Berlin Heidelberg 2009, pp. 391–417.

Biegler, L. T., and Grossmann, I. E., 2004, “Retrospective on Optimization,” Comput. Chem. Eng., 28 (8), pp. 1169–1192.

[CrossRef]Ghanem, R. G., and Spanos, P. D., 2003, "*Stochastic Finite Elements: A Spectral Approach*", Dover Publications, Mineola, NY.

Isukapalli, S. S., Roy, A., and Georgopoulos, P. G., 1998, “Stochastic Response Surface Methods (Srsms) for Uncertainty Propagation: Application to Environmental and Biological Systems,” Risk Anal., 18 (3), pp. 351–363.

[CrossRef]