Pottmann, H., and Wallner, J., 2001, "*Computational Line Geometry*", Springer, New York, pp. 270–282.

Sasaki, S., 1955, "*Differential Geometry*", Kyolitsu, Tokyo (in Japanese).

McCarthy, J. M., and Roth, B., 1981, “The Curvature Theory of Line Trajectories in Spatial Kinematics,” ASME J. Mech. Des., 103 (4), pp. 718–724.

McCarthy, J. M., 1987, “The Instantaneous Kinematics of Line Trajectories in Terms of a Kinematic Mapping of Spatial Rigid Motion,” ASME J. Mech., Transm., Autom. Des., 109 (1), pp. 95–100.

McCarthy, J. M., 1987, “On the Scalar and Dual Formulations of the Curvature Theory of Line Trajectories,” ASME J. Mech., Transm., Autom. Des., 109 (1), pp. 101–106.

Dai, J. S., and Rees Jones, J., 2002, “Null-Space Construction Using Cofactors From a Screw-Algebra Context,” Proc. R. Soc. London, Ser. A, 458 (2024), pp. 1845–1866.

[CrossRef]Bunduwongse, R., 1996, “Curvature Theory of Single and Double DOF Pencil Trajectories, Ph.D. thesis, Tennessee Technological University, Cookeville, TN.

Ting, K. L., Zhang, Y., and Bunduwongse, R., 2005, “Characterization and Coordination of Point-Line Trajectories,” ASME J. Mech. Des., 127 (3), pp. 502–505.

[CrossRef]Zhang, Y., and Ting, K. L., 2005, “Point-Line Distance Under Riemannian Metrics,” ASME J. Mech. Des., 130 , p. 092304.

[CrossRef]Zhang, Y., and Ting, K. L., 2004, “On Point-Line Geometry and Displacement,” Mech. Mach. Theory, 39 (10), pp. 1033–1050.

[CrossRef]Zhang, Y., and Ting, K. L., 2007, “On Higher-Order Point-Line and the Associated Rigid Body Motions,” ASME J. Mech. Des., 129 (2), pp. 166–174.

[CrossRef]Zhang, Y., and Ting, K. L., 2004, “On the Basis Screws and Screw Systems of Point-Line and Line Displacements,” ASME J. Mech. Des., 126 (1), pp. 56–62.

[CrossRef]Dai, J. S., 2006, “A Historical Review of the Theoretical Development of Rigid Body Displacements From Rodrigues Parameters to the Finite Twist,” Mech. Mach. Theory, 41 (1), pp. 41–52.

[CrossRef]Wang, D. L., Liu, J., and Xiao, D. Z., 2000, “Geometrical Characteristics of Some Typical Spatial Constraints,” Mech. Mach. Theory, 35 (10), pp. 1413–1430.

[CrossRef]Hunt, K. H., 1978, "*Kinematic Geometry of Mechanisms*", Clarendon, Oxford, pp. 270–273.

do Carmo, M. P., 1976, "*Differential Geometry of Curves and Surfaces*", Prentice-Hall, Englewood Cliffs, NJ.

Lu, W., and Pottmann, H., 1996, “Pipe Surfaces With Rational Spine Curve Are Rational,” Comput. Aided Geom. Des., 13 , pp. 621–628.

[CrossRef]Patrikalakis, N. M., and Maekawa, T., 2002, "*Shape Interrogation for Computer Aided Design and Manufacturing*", Springer-Verlag, Berlin, pp. 353–365.

Shani, U., and Ballard, D. H., 1984, “Splines as Embedding for Generalized Cylinders,” Comput. Vis. Graph. Image Process., 27 , pp. 129–156.

[CrossRef]Farouki, R. T., and Sverrisson, R., 1996, “Approximation of Rolling-Ball Blends for Free-Form Parametric Surfaces,” Comput.-Aided Des., 28 (11), pp. 871–878.

[CrossRef]Pegna, J., and Wilde, D. J., 1990, “Spherical and Circular Blending of Functional Surfaces,” ASME J. Offshore Mech. Arct. Eng., 112 (2), pp. 134–142.

Blackmore, D., Leu, M. C., and Wang, L. P., 1997, “Sweep-Envelope Differential Equation Algorithm and Its Application to NC Machining Verification,” Comput. Aided Des., 29 (9), pp. 629–637.

[CrossRef]Stasiak, A., and Maddocks, J. H., 2000, “Best Packing in Proteins and DNA,” Nature (London), 406 , pp. 251–253.

[CrossRef]Maritan, A., Micheletti, C., Trovato, A., and Banavar, J. R., 2000, “Optimal Shapes of Compact Strings,” Nature (London), 406 , pp. 287–290.

[CrossRef]Caglioti, V., and Giusti, A., 2006, “Reconstruction of Canal Surfaces From Single Images Under Exact Perspective,” "*ECCV 2006*", Vol. 1 , Springer, Berlin, pp. 289–300, Paper No. LNCS 3951.

Peternell, M., and Pottmann, H., 1997, “Computing Rational Parametrizations of Canal Surfaces,” J. Symb. Comput., 23 , pp. 255–266.

[CrossRef]Landsmann, G., Schicho, J., Winkler, F., and Hillgarter, E., 2000, “Symbolic Parametrization of Pipe and Canal Surfaces,” Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation , St. Andrews, Scotland, pp. 202–208.

Xu, Z., Feng, R., and Sun, J., 2006, “Analytic and Algebraic Properties of Canal Surfaces,” J. Comput. Appl. Math., 195 , pp. 220–228.

[CrossRef]Vogel, W. O., 1960, “Eiflöchen, die von einer einparametrigen Schar kongruenter Kreise vollständig bedeckt werden,” Math. Nachr., 22 , pp. 27–45, in German.

[CrossRef]Vogel, W. O., 1962, “Flächen, die von einer einparametrigen Schar kongruenter Kreise erzeugt werden,” Monatsh. Math., 66 , pp. 61–78, in German.

[CrossRef]Izumiya, S., Saji, K., and Takeuchi, N., 2005, “Circular Surfaces,” Advances in Geometry, 7 (2) pp. 295–313.

[CrossRef]Soni, A. H., and Ting, K. L., 1983, “Instantaneous Kinematics of a Plane in Spherical Motion,” ASME J. Mech., Transm., Autom. Des., 105 , pp. 560–568.

Ting, K. L., and Soni, A. H., 1983 “Instantaneous Kinematics of a Plane in Space Motion,” ASME J. Mech., Transm., Autom. Des., 105 , pp. 552–559.

Leapchuse, M., 1969, "*Schaum’s Outline of Theory and Problems of Differential Geometry*", McGraw-Hill, New York, pp. 70–71.

Cartan, H., 1996, "*Differential Forms*", Dover, New York, pp. 139–163.

Eisenhart, L. P., 1909, "*A Treatise on the Differential Geometry of Curves and Surfaces*", Ginn, Boston, MA.

Hilbert, D., and Cohn-Vossen, S., 1952, "*Geometry and the Imagination*", AMS Chelsea, New York.

Tsai, L. W., 1999, "*Robot Analysis: The Mechanics of Serial and Parallel Manipulators*", Wiley, New York.

Yao, L., Dai, J. S., Wei, G., and Li, H., 2005, “Geometric Modeling and Meshing Characteristics of the Toroidal Drive,” ASME J. Mech. Des., 127 (5), pp. 988–996.

[CrossRef]Yao, L., Dai, J. S., and Wei, G., 2006, “Error Analysis and Compensation for Meshing Contact of Toroidal Drives,” ASME J. Mech. Des., 128 (3), pp. 610–617.

[CrossRef]Dai, J. S., and Wang, D., 2007, “Geometric Analysis and Synthesis of the Metamorphic Robotic Hand,” ASME J. Mech. Des., 129 (11), pp. 1191–1197.

[CrossRef]