Tsay, D., and Huey, C., 1993, “Application of Rational B-Splines to the Synthesis of Cam-Follower Motion Programs,” ASME J. Mech. Des., 115 , pp. 621–626.

[CrossRef]Tsay, D., and Huey, C., 1988, “Cam Motion Synthesis Using Spline Functions,” ASME J. Mech., Transm., Autom. Des., 110 , pp. 161–165.

Mosier, R., 2000, “Modern Cam Design,” Int. J. Veh. Des., 23 (1/2), pp. 38–55.

[CrossRef]Sandgren, E., and West, R., 1989, “Shape Optimization of Cam Profiles Using a B-Spline Representation,” ASME J. Mech., Transm., Autom. Des., 111 , pp. 195–201.

Neklutin, C. N., 1952, “Designing Cams for Controlled Inertia and Acceleration,” Mach. Des., 24 , June, pp. 143–160.

Norton, R., 2002, "*Cam Design and Manufacturing Handbook*", Industrial Press Inc., New York.

Yoon, K., and Rao, S., 1993, “Cam Motion Synthesis Using Cubic Splines,” ASME J. Mech. Des., 115 , pp. 441–446.

[CrossRef]Wang, L., and Yang, Y., 1996, “Computer Aided Design of Cam Motion Programs,” Comput. Ind. Eng., 28 , pp. 151–161.

[CrossRef]Kim, J., Ahn, K., and Kim, S., 2002, “Optimal Synthesis of a Spring-Actuated Cam Mechanism Using a Cubic Spline,” J. Mech. Eng. Sci., 216 , pp. 875–883.

Mermelstein, S., and Acar, M., 2004, “Optimising Cam Motion Using Piecewise Polynomials,” Eng. Comput., 19 , pp. 241–254.

[CrossRef]Qiu, H., Lin, C. -J., Li, Z. -Y., Ozaki, H., Wang, J., and Yue, Y., 2005, “A Universal Optimal Approach to Cam Curve Design and Its Applications,” Mech. Mach. Theory, 40 , pp. 669–692.

[CrossRef]Hartwig, K. -H., 2006. “Kurvengetriebe zur steuerung des ladungswechsels in verbrennungsmotoren (Cam Mechanisms That Drive the Charge Cycle in Combustion Engines),” Proceedings of the VDI-Getriebetagung 2006, VDI-Berichte 1966 , Fulda, Germany, pp. 29–43.

Nguyen, V., and Kim, D., 2007, “Flexible Cam Profile Synthesis Method Using Smoothing Spline Curves,” Mech. Mach. Theory, 42 , pp. 825–838.

[CrossRef]Rockafellar, R., 1993, “Lagrange Multipliers and Duality,” SIAM Rev., 35 , pp. 183–283.

[CrossRef]Demeulenaere, B., De Caigny, J., Swevers, J., and De Schutter, J., “Optimal Splines for Rigid Motion Systems: Benchmarking and Extensions,” ASME J. Mech. Des., 131 , p. 101005.

Dierckx, P., 1993, "*Curve and Surface Fitting With Splines*", Oxford University Press, New York.

Boyd, S., and Vandenberghe, L., 2004, "*Convex Optimization*", Cambridge University Press, Cambridge.

Kwakernaak, H., and Smit, J., 1968, “Minimum Vibration Cam Profiles,” J. Mech. Eng. Sci., 10 , pp. 219–227.

[CrossRef]Van de Straete, H. J., and De Schutter, J., 1999, “Optimal Variable Transmission Ratio and Trajectory for an Inertial Load With Respect to Servo Motor Size,” ASME J. Mech. Des., 121 , pp. 544–551.

[CrossRef]Sturm, J., 1999, “Using SEDUMI 1.02, a MATLAB Toolbox for Optimization Over Symmetric Cones,” Optim. Methods Software, 11–12 , pp. 625–653.

[CrossRef]Tutuncu, R., Toh, K., and Todd, M., 2003, “Solving Semidefinite-Quadratic-Linear Programs Using SDPT3 ,” Math. Program. Ser. B, 95 , pp. 189–217.

[CrossRef]Demeulenaere, B., De Caigny, J., Swevers, J., and De Schutter, J., 2007, “Dynamically Compensated and Robust Motion System Inputs Based on Splines: A Linear Programming Approach,” Proceedings of the American Control Conference , pp. 5011–5018.

Chen, S., Donoho, D., and Saunders, M., 1998, “Atomic Decomposition by Basis Pursuit,” SIAM J. Sci. Comput. (USA), 20 (1), pp. 33–61.

[CrossRef]Candès, E., and Wakin, M., 2008, “An Introduction to Compressive Sampling,” IEEE Signal Process. Mag., 25 (2), pp. 21–30.

[CrossRef]Rudin, L., Osher, S. J., and Fatemi, E., 1992, “Nonlinear Total Variation Based Noise Removal Algorithms,” Physica D, 60 , pp. 259–268.

[CrossRef]Betts, J., 2001, "*Practical Methods for Optimal Control Using Nonlinear Programming*", SIAM, Philadelphia, PA.