Jaecklin, V. P., Linder, C., de Rooij, N. F., and Moret, J. M., 1992, “Micromechanical Comb Actuators With Low Driving Voltage,” J. Micromech. Microeng.

[CrossRef], 2 , pp. 250–255.

Yin, L., and Ananthasuresh, G. K., 2002, “A Novel Topology Design Scheme for the Multi-Physics Problems of Electro-Thermally Actuated Compliant Micromechanisms,” Sens. Actuators, A, 97–98 , pp. 599–609.

Chu, W. H., and Mehregany, M., 1994, “Microfabricated Tweezers With a Large Gripping Force and a Large Range of Motion,” Technical Digest, IEEE Solid-State Sensors and Actuator Workshop , Hilton Head, SC, Jun., pp. 107–110.

Guckle, H., Klein, J., Christenson, T., Skrobis, K., Laudon, M., and Lowell, E. G., 1992, “Thermomagnetic Metal Flexure Actuators,” Technical Digest, Solid-State Sensor and Actuator Workshop , Hilton Head Island, SC, pp. 73–76.

Moulton, T., and Ananthasuresh, G. K., 2001, “Micromechanical Devices With Embedded Electro-Thermal-Compliant Actuation,” Sens. Actuators, A

[CrossRef], 90 , pp. 38–48.

Mankame, N. D., and Ananthasuresh, G. K., 2000, “Effect of Thermal Boundary Conditions and Scale on the Behaviour of Electro-Thermal-Compliant Micromechanisms,” "*Proceedings of Modeling and Simulation of Microsystems MSM2000*", San Diego, CA, pp. 609–612.

Que, L., Park, J. S., and Gianchandani, Y. B., 2001, “Bent-Beam Electrothermal Actuators-Part I: Single Beam and Cascades Devices,” J. Microelectromech. Syst.

[CrossRef], 10 (2), pp. 247–254.

Park, J. S., Chu, L. L., Oliver, A. D., and Gianchandani, Y. B., 2001, “Bent-Beam Electrothermal Actuators-Part II: Linear and Rotary Microengines,” J. Microelectromech. Syst.

[CrossRef], 10 (2), pp. 255–262.

Mankame, N. D., and Ananthasuresh, G. K., 2001, “Comprehensive Thermal Modeling and Characterization of an Electro-Thermal-Compliant Microactuator,” J. Micromech. Microeng.

[CrossRef], 11 , pp. 452–462.

Krishnan, G., and Ananthasuresh, G. K., 2008, “Evaluation and Design of Displacement-Amplifying Compliant Mechanisms for Sensor Applications,” ASME J. Mech. Des.

[CrossRef], 130 , p. 102304.

Lu, K. -J., and Kota, S., 2006, “Topology and Dimensional Synthesis of Compliant Mechanisms Using Discrete Optimization,” ASME J. Mech. Des.

[CrossRef], 128 , pp. 1080–1091.

1992, "*Topology Designs of Structures*", Bendsøe, M.P., and Mota Soares, C.M., eds., Kluwer, Dordrecht, The Netherlands.

Diaz, A. R., and Sigmund, O., 1995, “Checkerboard Patterns in Layout Optimization,” Struct. Optim.

[CrossRef], 10 , pp. 40–45.

Mankame, N., and Saxena, A., 2007, “Analysis of the Hex-Cell Parameterization for Topology Synthesis of Compliant Mechanisms,” ASME Paper No. DETC2007-35244.

Sigmund, O., 1994, “Design of Material Structures Using Topology Optimization,” Ph.D. thesis, Department of Solid Mechanics, DTU, Denmark.

Jog, C. S., Haber, R. B., and Bendsøe, M. P., 1994, “Topology Design With Optimized Self-Adaptive Materials,” Int. J. Numer. Methods Eng.

[CrossRef], 37 , pp. 1323–1350.

Jog, C. S., and Haber, R. B., 1996, “Stability of Finite Element Models for Distributed Parameter Optimization and Topology Design,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 130 , pp. 203–226.

Sigmund, O., 1997, “On the Design of Compliant Mechanisms Using Topology Optimization,” Mech. Struct. Mach., 25 (10), pp. 495–526.

Petersson, J., and Sigmund, O., 1998, “Slope Constrained Topology Optimization,” Int. J. Numer. Methods Eng.

[CrossRef], 41 , pp. 1417–1434.

Yin, L., and Ananthasuresh, G. K., 2003, “A Novel Formulation for the Design of Distributed Compliant Mechanisms,” Mech. Based Des. Struct. Mach.

[CrossRef], 31 (2), pp. 151–179.

Poulsen, T. A., 2003, “A New Scheme for Imposing Minimum Length Scale in Topology Optimization,” Int. J. Numer. Methods Eng.

[CrossRef], 57 , pp. 741–760.

Guest, J. K., Prévost, J. H., and Belytschko, T., 2004, “Achieving Minimum Length Scale in Topology Optimization Using Nodal Design Variables and Projection Functions,” Int. J. Numer. Methods Eng.

[CrossRef], 61 , pp. 238–254.

Bleicher, M. N., and Toth, L. F., 1965, “Two-Dimensional Honeycombs,” Am. Math. Monthly, 72 (9), pp. 969–973.

Tóth, L. F., 1964, “What the Bees Know and What They Do Not Know,” Bull. Am. Math. Soc.

[CrossRef], 70 (4), pp. 468–481.

Hales, T. C., 2001, “The Honeycomb Conjecture,” Discrete Comput. Geom., 25 , pp. 1–22.

Saxena, R., and Saxena, A., 2007, “On Honeycomb Representation and SIGMOID Material Assignment in Optimal Topology Synthesis of Compliant Mechanisms,” Finite Elem. Anal. Des., 43 (14), pp. 1082–1098.

Saxena, A., 2008, “A Material-Mask Overlay Strategy for Continuum Topology Optimization of Compliant Mechanisms Using Honeycomb Discretization,” ASME J. Mech. Des.

[CrossRef], 130 (8), p.082304.

Chang, S. Y., and Youn, S. K., 2006, “Material Cloud Method—Its Mathematical Investigation and Numerical Application for 3D Engineering Design,” Int. J. Solids Struct.

[CrossRef], 43 (17), pp. 5337–5354.

Sethian, J. A., and Wiegmann, A., 2000, “Structural Boundary Via Level Set and Immersed Interface Methods,” J. Comput. Phys.

[CrossRef], 163 (2), pp. 489–528.

Cheng, G. D., and Guo, X., 1997, “ε-Relaxation Approach in Structural Optimization,” Struct. Optim.

[CrossRef], 13 , pp. 258–266.

Duysinx, P., and Bendsøe, M. P., 1998, “Topology Optimization of Continuum Structures With Local Stress Constraints,” Int. J. Numer. Methods Eng.

[CrossRef], 43 , pp. 1453–1478.

Sharpe, W. N., Yuan, B., Vaidyanathn, R., and Edwards, R. L., 1997, “Measurement of Young’s Modulus, Poisson’s Ratio and Tensile Strength of Polysilicon,” Tenth IEEE International Workshop on Microelectromechanical Systems , Nagoya, Japan, pp. 424–429.

Svanberg, K., 2002, “A Class of Globally Convergent Optimization Methods Based on Conservative Convex Separable Approximations,” SIAM J. Optim.

[CrossRef], 12 (2), pp. 555–573.