Iman, R. L., and Helton, J. C., 1988, “An Investigation of Uncertainty and Sensitivity Analysis Techniques for Computer Models,” Risk Anal.

[CrossRef], 8 (1), pp. 71–90.

Hamby, D. M., 1994, “Review of Techniques for Parameter Sensitivity Analysis of Environmental Models,” Environ. Monit. Assess.

[CrossRef], 32 (2), pp. 135–154.

Kern, D., Du, X., and Sudjianto, A., 2003, “Forecasting Manufacturing Quality During Design Using Process Capability Data,” "*Proceedings of the IMECE’ 03, ASME 2003 International Mechanical Engineering Congress and RD&D Expo*", Washington, DC, Nov. 15–21.

Frey, H. C., and Patil, S. R., 2002, “Identification and Review of Sensitivity Analysis Methods,” Risk Anal.

[CrossRef], 22 (3), pp. 553–578.

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and Tarantola, S., 2008, "*Global Sensitivity Analysis: The Primer*", Wiley, New York.

Liu, H., Chen, W., and Sudjianto, A., 2006, “Relative Entropy Based Method for Global and Regional Sensitivity Analysis in Probabilistic Design,” ASME J. Mech. Des.

[CrossRef], 128 (2), pp. 1–11.

Helton, J. C., 1993, “Uncertainty and Sensitivity Analysis Techniques for Use in Performance Assessment for Radioactive Waste Disposal,” Reliab. Eng. Syst. Saf.

[CrossRef], 42 (2-3), pp. 327–367.

Helton, J. C., and Davis, F. J., 2003, “Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems,” Reliab. Eng. Syst. Saf.

[CrossRef], 81 (1), pp. 23–69.

Saltelli, A., Tarantola, S., and Chan, K., 1999, “A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output,” Technometrics

[CrossRef], 41 (1), pp. 39–56.

Chen, W., Jin, R., and Sudjianto, A., 2005, “Analytical Variance-Based Global Sensitivity Analysis in Simulation-Based Design Under Uncertainty,” ASME J. Mech. Des.

[CrossRef], 127 (5), pp. 875–886.

Yin, X., and Chen, W., 2008, “A Hierarchical Statistical Sensitivity Analysis Method for Complex Engineering Systems Design,” ASME J. Mech. Des.

[CrossRef], 130 (7), pp. 071402.

Sobol, I. M., 1993, “Sensitivity Analysis for Non-Linear Mathematical Models,” Mathematical Modeling and Computational Experiment, 1 , pp. 407–414.

Sobol, I. M., 1990, “Sensitivity Estimates for Nonlinear Mathematical Models,” Matematicheskoe Modelirovanie, 2 , pp. 112–118.

Homma, T., and Saltelli, A., 1996, “Importance Measures in Global Sensitivity Analysis of Nonlinear Models,” Reliab. Eng. Syst. Saf.

[CrossRef], 52 (1), pp. 1–17.

Sobol, I. M., 2001, “Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates,” Math. Comput. Simul.

[CrossRef], 55 (1-3), pp. 271–280.

Oakley, J. E., and O'Hagan, A., 2004, “Probabilistic Sensitivity Analysis of Complex Models: A Bayesian Approach,” J. R. Stat. Soc. Ser. B (Stat. Methodol.), 66 (3), pp. 751–769.

Greenland, S., 2001, “Sensitivity Analysis, Monte Carlo Risk Analysis, and Bayesian Uncertainty Assessment,” Risk Anal., 21 (4), pp. 579–584.

Wu, Y. -T., 1987, “Demonstration of a New, Fast Probability Integration Method for Reliability Analysis,” Journal of Engineering for Industry, Serial B, 109 (1), pp. 8–24.

Saltelli, A., Tarantola, S., and Chan, K., 1999, “A Role for Sensitivity Analysis in Presenting the Results From MCDA Studies to DMs,” J. Multi-Criter. Decis. Anal., 8 (3), pp. 139–145.

Balbas, A., Ballvé, M., and Guerra, P. J., 1999, “Sensitivity in Multi-Objective Programming Under Homogeneity Assumptions,” J. Multi-Criter. Decis. Anal., 8 (3), pp. 133–138.

Wu, W. D., and Rao, S. S., 2007, “Uncertainty Analysis and Allocation of Joint Tolerances in Robot Manipulators Based on Interval Analysis,” Reliab. Eng. Syst. Saf.

[CrossRef], 92 (1), pp. 54–64.

Ferson, S., and Ginzburg, L. R., 1996, “Different Methods Are Needed to Propagate Ignorance and Variability,” Reliab. Eng. Syst. Saf.

[CrossRef], 54 (2-3), pp. 133–144.

Ferson, S., Nelsen, R. B., Hajagos, J., Berleant, D. J., Zhang, J., Tucker, W. T., Ginzburg, L. R., and Oberkampf, W. L., 2004, “Dependence in Probabilistic Modeling, Dempster-Shafer Theory, and Probability Bounds Analysis,” Sandia National Laboratories, Report No. SAND2004-3072.

Saltelli, A., Chan, K., and Scott, E. M., 2000, "*Sensitivity Analysis*", Wiley, New York.

Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M., 2004, "*Sensitivity Analysis in Practice*", Wiley, New York.

Barron, H., and Schmidt, C. P., 1988, “Sensitivity Analysis of Additive Multiattribute Value Models,” Oper. Res., 36 (1), pp. 122–127.

Avila, S. L., Lisboa, A. C., Krahenbuhl, L., Carpes, W. P., Vasconcelos, J. A., Saldanha, R. R., and Takahashi, R. H. C., 2006, “Sensitivity Analysis Applied to Decision Making in Multiobjective Evolutionary Optimization,” IEEE Trans. Magn., 42 (4), pp. 1103–1106.

Deb, K., 2001, "*Multiobjective Optimization Using Evolutionary Algorithms*", Wiley, New York.

Zhang, W. H., 2003, “On the Pareto Optimum Sensitivity Analysis in Multicriteria Optimization,” Int. J. Numer. Methods Eng.

[CrossRef], 58 (6), pp. 955–977.

Balbas, A., Galperin, E., and Guerra, P. J., 2005, “Sensitivity of Pareto Solutions in Multiobjective Optimization,” J. Optim. Theory Appl., 126 (2), pp. 247–264.

Fiacco, A. V., 1983, "*Introduction to Sensitivity and Stability Analysis in Nonlinear Programming*", Academic, New York.

Bauer, K. W., Parnell, G. S., and Meyers, D. A., 1999, “Response Surface Methodology as A Sensitivity Analysis Tool in Decision Analysis,” J. Multi-Criter. Decis. Anal., 8 (3), pp. 162–180.

Cover, T. M., and Thomas, J. A., 1991, "*Elements of Information Theory*", Wiley, New York.

Li, M., Azarm, S., and Boyars, A., 2006, “A New Deterministic Approach Using Sensitivity Region Measures for Multi-Objective and Feasibility Robust Design Optimization,” ASME J. Mech. Des.

[CrossRef], 128 (4), pp. 874–883.

Miettinen, K. M., 1999, "*Nonlinear Multiobjective Optimization*", Kluwer Academic, Boston, MA.

Zadeh, L. A., 1965, “Fuzzy Sets,” Information and Control, 8 , pp. 338–353.

Vincent, L., 1993, “Morphological Grayscale Reconstruction in Image Analysis: Applications and Efficient Algorithms,” IEEE Trans. Image Process.

[CrossRef], 2 (2), pp. 176–201.

Shannon, C. E., 1948, “A Mathematical Theory of Communication,” Bell Syst. Tech. J., 27 , pp. 379–423.

Shannon, C. E., 1948, “A Mathematical Theory of Communication,” Bell Syst. Tech. J., 27 , pp. 623–656.

Gunawan, S., Farhang-Mehr, A., and Azarm, S., 2004, “On Maximizing Solution Diversity in Multiobjective Multidisciplinary Genetic Algorithm for Design Optimization,” Mech. Based Des. Struct. Mach.

[CrossRef], 32 (4), pp. 491–514.

Farhang-Mehr, A., and Azarm, S., 2003, “An Information-Theoretic Performance Metric for Quality Assessment of Multi-Objective Optimization Solution Sets,” ASME J. Mech. Des.

[CrossRef], 125 (4), pp. 655–663.

Shewry, M. C., and Wynn, H. P., 1987, “Maximum Entropy Sampling,” J. Appl. Stat., 14 , pp. 165–170.

Farhang-Mehr, A., and Azarm, S., 2005, “Bayesian Meta-Modeling of Engineering Design Simulations: A Sequential Approach With Adaptation to Irregularities in the Response Behavior,” Int. J. Numer. Methods Eng.

[CrossRef], 62 , pp. 2104–2126.

Narayanan, S., and Azarm, S., 1999, “On Improving Multiobjective Genetic Algorithms for Design Optimization,” Struct. Multidiscip. Optim., 18 , pp. 146–155.

Li, M., 2007, “Robust Optimization and Sensitivity Analysis With Multi-Objective Genetic Algorithms: Single- and Multi-Disciplinary Applications,” Ph.D. thesis, University of Maryland, College Park, MD.

Williams, N., Azarm, S., and Kannan, P. K., 2008, “Engineering Product Design Optimization for Retail Channel Acceptance,” ASME J. Mech. Des.

[CrossRef], 130 (6), p. 061402.

Acar, E., Haftka, R. T., and Johnson, T. F., 2007, “Tradeoff of Uncertainty Reduction Mechanisms for Reducing Weight of Composite Laminates,” ASME J. Mech. Des.

[CrossRef], 129 (3), pp. 266–274.

Kale, A. A., and Haftka, R. T., 2008, “Tradeoff of Weight and Inspection Cost in Reliability-Based Structural Optimization,” J. Aircr., 45 (1), pp. 77–85.

Welch, W. J., Buck, R. J., Sacks, J., Wynn, H. P., Mitchell, T. J., and Morris, M. D., 1992, “Screening, Predicting and Computer Experiments,” Technometrics

[CrossRef], 34 (1), pp. 15–25.

Stump, G., Yukish, M., Martin, J., and Simpson, T., 2004, “The ARL Trade Space Visualizer—An Engineering Decision-Making Tool,” Tenth AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference , Albany, NY, Aug. 30–Sept. 1.